Пример описания регрессионный анализ в статистике. Зависимая переменная Y. Предполагается, что множество допустимых функций, из которого подбирается, является параметрическим

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

Предполагается, что - независимые переменные (предикторы, объясняющие переменные) влияют на значения - зависимых переменных (откликов, объясняемых переменных). По имеющимся эмпирическим данным , требуется построить функцию , которая приближенно описывала бы изменение при изменении :

.

Предполагается, что множество допустимых функций, из которого подбирается , является параметрическим:

,

где - неизвестный параметр (вообще говоря, многомерный). При построении будем считать, что

, (1)

где первое слагаемое - закономерное изменение от , а второе - - случайная составляющая с нулевым средним; является условным математическим ожиданием при условии известного и называется регрессией по .

Пусть n раз измерены значения факторов и соответствующие значения переменной y ; предполагается, что

(2)

(второй индекс у x относится к номеру фактора, а первый – к номеру наблюдения); предполагается также, что

(3)

т.е. - некоррелированные случайные величины. Соотношения (2) удобно записывать в матричной форме:

, (4)

где - вектор-столбец значений зависимой переменной, t - символ транспонирования, - вектор-столбец (размерности k ) неизвестных коэффициентов регрессии, - вектор случайных отклонений,

-матрица ; в i -й строке находятся значения независимых переменных в i -м наблюдении первая переменная – константа, равная 1.

в начало

Оценка коэффициентов регрессии

Построим оценку для вектора так, чтобы вектор оценок зависимой переменной минимально (в смысле квадрата нормы разности) отличался от вектора заданных значений:

.

Решением является (если ранг матрицы равен k+1 ) оценка

(5)

Нетрудно проверить, что она несмещенная.

в начало

Проверка адекватности построенной регрессионной модели

Между значением , значением из регрессионной модели и значением тривиальной оценкой выборочного среднего существует следующее соотношение:

,

где .

По сути, член в левой части определяет общую ошибку относительно среднего. Первый член в правой части () определяет ошибку, связанную с регрессионной моделью, а второй () ошибку, связанную со случайными отклонениями и необъясненной построенной моделью.

Поделив обе части на полную вариацию игреков , получим коэффициент детерминации:

(6)

Коэффициент показывает качество подгонки регрессионной модели к наблюдаемым значениям . Если , то регрессия на не улучшает качества предсказания по сравнению с тривиальным предсказанием .

Другой крайний случай означает точную подгонку: все , т.е. все точки наблюдений лежат на регрессионной плоскости.

Однако, значение возрастает с ростом числа переменных (регрессоров) в регрессии, что не означает улучшения качества предсказания, и потому вводится скорректированный коэффициент детерминации

(7)

Его использование более корректно для сравнения регрессий при изменении числа переменных (регрессоров).

Доверительные интервалы для коэффициентов регрессии. Стандартной ошибкой оценки является величина , оценка для которой

(8)

где - диагональный элемент матрицы Z . Если ошибки распределены нормально, то, в силу свойств 1) и 2), приведенных выше, статистика

(9)

распределена по закону Стьюдента с степенями свободы, и поэтому неравенство

, (10)

где - квантиль уровня этого распределения, задает доверительный интервал для с уровнем доверия .

Проверка гипотезы о нулевых значениях коэффициентов регрессии. Для проверки гипотезы об отсутствии какой бы то ни было линейной связи между и совокупностью факторов, , т.е. об одновременном равенстве нулю всех коэффициентов, кроме коэффициентов, при константе используется статистика

, (11)

распределенная, если верна, по закону Фишера с k и степенями свободы. отклоняется, если

(12)

где - квантиль уровня .

в начало

Описание данных и постановка задачи

Исходный файл с данными tube_dataset.sta содержит 10 переменных и 33 наблюдения. См. рис. 1.


Рис. 1. Исходная таблица данных из файла tube_dataset.sta

В названии наблюдений указан временной интервал: квартал и год (до и после точки соответственно). Каждое наблюдение содержит данные за соответствующий временной интервал. 10 переменная «Квартал» дублирует номер квартала в имени наблюдения. Список переменных приведен ниже.


Цель: Построить регрессионную модель для переменной №9 «Потребление труб».

Этапы решения:

1) Сначала проведем разведочный анализ имеющихся данных на предмет выбросов и незначимых данных (построение линейных графиков и диаграмм рассеяния).

2) Проверим наличие возможных зависимостей между наблюдениями и между переменными (построение корреляционных матриц).

3) Если наблюдения будут образовывать группы, то для каждой группы построим регрессионную модель для переменной «Потребление труб» (множественная регрессия).

Перенумеруем переменные по порядку в таблице. Зависимой переменной (отклик) будем называть переменную «Потребление труб». Независимыми (предикторами) назовем все остальные переменные.

в начало

Решение задачи по шагам

Шаг 1. Диаграммы рассеяния (см. рис. 2.) явных выбросов не выявили. В то же время, на многих графиках явно просматривается линейная зависимость. Также есть пропущенные данные по «Потреблению труб» в 4 кварталах 2000 года.


Рис. 2. Диаграмма рассеяния зависимой переменной (№9) и кол-ва скважин (№8)

Цифра после символа Е в отметках по оси Х обозначает степень числа 10, которое определяет порядок значений переменной №8 (Количество скважин действующих). В данном случае речь идет о значении порядка 100.000 скважин (10 в 5 степени).

На диаграмме рассеяния на рис. 3 (см. ниже) отчетливо видно 2 облака точек, причем каждое из них имеет явную линейную зависимость.

Понятно, что переменная №1, скорее всего, войдет в регрессионную модель, т.к. нашей задачей является выявление именно линейной зависимости между предикторами и откликом.


Рис. 3. Диаграмма рассеяния зависимой переменной (№9) и Инвестиций в нефтяную промышленность (№1)

Шаг 2. Построим линейные графики всех переменных в зависимости от времени. Из графиков видно, что данные по многим переменным сильно разнятся в зависимости от номера квартала, но рост из года в год сохраняется.

Полученный результат подтверждает предположения, полученные на основе рис. 3.


Рис. 4. Линейный график 1-й переменной в зависимости от времени

В частности, на рис. 4 построен линейный график для первой переменной.

Шаг 3. Согласно результатам рис. 3 и рис. 4, разобьем наблюдения на 2 группы, по переменной №10 «Квартал». В первую группу войдут данные по 1 и 4 кварталу, а во вторую – данные по 2 и 3.

Чтобы разбить наблюдения согласно кварталам на 2 таблицы, воспользуемся пунктом Данные/Подмножество/Случайный выбор . Здесь в качестве наблюдений нам надо указать условия на значения переменной КВАРТАЛ. Cм. рис. 5.

Согласно заданным условиям наблюдения будут скопированы в новую таблицу. В строчке снизу можно указать конкретные номера наблюдений, однако в нашем случае это займет много времени.

Рис. 5. Выбор подмножества наблюдений из таблицы

В качестве заданного условия зададим:

V10 = 1 OR V10 = 4

V10 – это 10 переменная в таблице (V0 – это столбец с наблюдениями). По сути, мы проверяем каждое наблюдение в таблице, относится оно к 1-ому или 4-ому кварталу или нет. Если мы хотим, выбрать другое подмножество наблюдений, то можно либо сменить условие на:

V10 = 2 OR V10 = 3

либо перенести первое условие в исключающие правила.

Нажав ОК , мы сначала получим таблицу с данными только по 1 и 4 кварталу, а затем и таблицу с данными по 2 и 3 кварталу. Сохраним их под именами 1_4.sta и 2_3.sta через вкладку Файл/Сохранить как.

Далее будем работать уже с двумя таблицами и полученные результаты регрессионного анализа для обеих таблиц можно будет сравнить.

Шаг 4. Построим матрицу корреляций для каждой из групп, чтобы проверить предположение относительно линейной зависимости и учесть возможные сильные корреляции между переменными при построении регрессионной модели. Так как есть пропущенные данные, корреляционная матрица была построена с опцией попарного удаления пропущенных данных. См. рис. 6.


Рис. 6. Матрица корреляций для первых 9-ти переменных по данным 1 и 4 кварталов

Из корреляционной матрицы в частности понятно, некоторые переменные очень сильно коррелируют друг с другом.

Стоит отметить, что достоверность больших значений корреляции возможна только при отсутствии выбросов в исходной таблице. Поэтому диаграммы рассеяния для зависимой переменной и всех остальных переменных обязательно должны учитываться при корреляционном анализе.

Например, переменная №1 и №2 (Инвестиции в нефтяную и газовую промышленность соответственно). См. рис.7 (или, например, рис. 8).


Рис. 7. Диаграмма рассеяния для переменной №1 и №2

Рис. 8. Диаграмма рассеяния для переменной №1 и №7

Данная зависимость легко объяснима. Также ясен и высокий коэффициент корреляции между объемами добычи нефти и газа.

Высокий коэффициент корреляции между переменными (мультиколлиниарность) нужно учитывать при построении регрессионной модели. Здесь могут возникнуть большие ошибки при вычислении коэффициентов регрессии (плохообусловленная матрица при вычислении оценки через МНК).

Приведем наиболее распространенные способы устранения мультиколлиниарности :

1) Гребневая регрессия.

Данная опция задается при построении множественной регрессии. Число - малое положительное число. Оценка МНК в таком случае равна:

,

где Y – вектор со значениями зависимой переменной, X – матрица, содержащая по столбцам значения предикторов, а – единичная матрица порядка n+1. (n – количество предикторов в модели).

Плохообусловленность матрицы при гребневой регрессии значительно уменьшается.

2) Исключение одной из объясняющих переменных.

В этом случае из анализа исключается одна объясняющая переменная имеющая высокий парный коэффициент корреляции (r>0.8) с другим предиктором.

3) Использование пошаговых процедур с включением/исключением предикторов .

Обычно, в таких случаях, используют либо гребневую регрессию (она задается в качестве опции при построении множественной), либо, на основе значений корреляции, исключают объясняющие переменные, имеющие высокий парный коэффициент корреляции (r > 0.8), либо пошаговую регрессию с включением/исключением переменных.

Шаг 5. Теперь построим регрессионную модель при помощи выпадающей вкладки меню (Анализ/Множественная регрессия ). В качестве зависимой переменной укажем «Потребление труб», в качестве независимых – все остальные. См. рис. 9.


Рис. 9. Построение множественной регрессии для таблицы 1_4.sta

Множественную регрессию можно проводить пошагово. В этом случае в модель будут пошагово включаться (или исключаться) переменные, которые вносят наибольший (наименьший) вклад в регрессию на данном шаге.

Также данная опция позволяет остановиться на шаге, когда коэффициент детерминации еще не наибольший, однако уже все переменные модели являются значимыми. См. рис. 10.


Рис. 10. Построение множественной регрессии для таблицы 1_4.sta

Особо стоит отметить, что пошаговая регрессия с включением, в случае, когда количество переменных больше количества наблюдений, является единственным способом построения регрессионной модели.

Установка нулевого значения свободного члена регрессионной модели используется в случае, если сама идея модели подразумевает нулевое значение отклика, когда все предикторы окажутся равными 0. Чаще всего подобные ситуации встречаются в экономических задачах.

В нашем случае свободный член мы включим в модель.


Рис. 11. Построение множественной регрессии для таблицы 1_4.sta

В качестве параметров модели выберем Пошаговую с исключением (Fвкл = 11, Fвыкл = 10), с гребневой регрессией (лямбда = 0.1). И для каждой группы построим регрессионную модель. См. рис.11.

Результаты в виде Итоговой таблицы регрессии (см. также рис. 14) представлены на рис.12 и рис.13. Они получены на последнем шаге регрессии.

Шаг 6. Проверка адекватности модели

Обратим внимание, что, несмотря на значимость всех переменных в регрессионной модели (p-уровень < 0.05 – подсвечены красным цветом), коэффициент детерминации R2 существенно меньше у первой группы наблюдений.

Коэффициент детерминации показывает, по сути, какая доля дисперсии отклика объясняется влиянием предикторов в построенной модели. Чем ближе R2 к 1, тем лучше модель.

F-статистика Фишера используется для проверки гипотезы о нулевых значениях коэффициентов регрессии (т.е. об отсутствии какой бы то ни было линейной связи между и совокупностью факторов, , кроме коэффициента ). Гипотеза отклоняется при малом уровне значимости.

В нашем случае (см. рис. 12) значение F-статистики = 13,249 при уровне значимости p < 0,00092, т.е. гипотеза об отсутствии линейной связи отклоняется.


Рис. 12. Результаты регрессионного анализа данных по 1 и 4 кварталу


Рис. 13. Результаты регрессионного анализа данных по 2 и 3 кварталу

Шаг 7. Теперь проведем анализ остатков полученной модели. Результаты, полученные при анализе остатков, являются важным дополнением к значению коэффициента детерминации при проверке адекватности построенной модели.

Для простоты будем рассматривать лишь группу, разбитую на кварталы с номерами 2 и 3, т.к. вторая группа исследуется аналогично.

В окне, представленном на рис. 14, на вкладке Остатки/предсказанные/наблюдаемые значения нажмем на кнопку Анализ остатков , и далее нажмем на кнопку Остатки и предсказанные . (См. рис. 15)

Кнопка Анализ остатков будет активна, только если регрессия получена на последнем шаге. Чаще оказывается важным получить регрессионную модель, в которой значимы все предикторы, чем продолжить построение модели (увеличивая коэффициент детерминации) и получить незначимые предикторы.

В этом случае, когда регрессия не останавливается на последнем шаге, можно искусственно задать количество шагов в регрессии.


Рис. 14. Окно с результатами множественной регрессии для данных по 2 и 3-му кварталам


Рис. 15. Остатки и предсказанные значения регрессионной модели по данным 2 и 3 квартала

Прокомментируем результаты, представленные на рис. 15. Важным является столбец с Остатками (разница первых 2-х столбцов). Большие остатки по многим наблюдениям и наличие наблюдения с маленьким остатком может указывать на последнее как на выброс.

Другими словами анализ остатков нужен для того, чтобы отклонения от предположений, угрожающие обоснованности результатов анализа, могли быть легко обнаружены.


Рис. 16. Остатки и предсказанные значения регрессионной модели по данным 2 и 3 кварталов + 2 границы 0.95 доверительного интервала

В конце приведем график, иллюстрирующий данные, полученные из таблицы на рис. 16. Здесь добавлены 2 переменные: UCB и LCB – 0.95 верх. и нижн. дов. интервал.

UBC = V2+1.96*V6

LBC = V2-1.96*V6

И удалены четыре последних наблюдения.

Построим линейный график с переменными (Графики/2М Графики/Линейные графики для переменных )

1) Наблюдаемое значение (V1)

2) Предсказанное значение (V2)

3) UCB (V9)

4) LCB (V10)

Результат представлен на рис. 17. Теперь видно, что построенная регрессионная модель довольно неплохо отражает реальное потребление труб, особенно на результатах недавнего прошлого.

Это означает, что в ближайшем будущем реальные значения могут быть приближены модельными.

Отметим один важный момент. В прогнозировании при помощи регрессионных моделей всегда важен базовый временной интервал. В рассматриваемой задаче были выбраны кварталы.

Соответственно, при построении прогноза предсказываемые значения будут также получаться по кварталам. Если нужно получить прогноз на год, то придется прогнозировать на 4 квартала и в конце накопится большая ошибка.

Подобную проблему можно решить аналогично, вначале лишь агрегируя данные от кварталов к годам (например, усреднением). Для данной задачи подход не очень корректен, так как останется всего лишь 8 наблюдений, по которым будет строиться регрессионная модель. См. рис.18.


Рис. 17. Наблюдаемые и предсказанные значения вместе с 0.95 верх. и ниж. довер. интервалами (данные по 2 и 3 кварталам)


Рис. 18. Наблюдаемые и предсказанные значения вместе с 0.95 верх. и ниж. довер. интервалами (данные по годам)

Чаще всего такой подход применяется при агрегировании данных по месяцам, при исходных данных по дням.

Следует помнить, что все методы регрессионного анализа позволяют обнаружить только числовые зависимости, а не лежащие в их основе причинные связи. Поэтому ответ на вопрос о значимости переменных в полученной модели остается за экспертом в данной области, который, в частности, способен учесть влияние факторов, возможно, не вошедших в данную таблицу.

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика
Регрессионная статистика
Множественный R 0,998364
R-квадрат 0,99673
Нормированный R-квадрат 0,996321
Стандартная ошибка 0,42405
Наблюдения 10

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

Множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии
Коэффициенты Стандартная ошибка t-статистика
Y-пересечение 2,694545455 0,33176878 8,121757129
Переменная X 1 2,305454545 0,04668634 49,38177965
* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты вывода остатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки
Наблюдение Предсказанное Y Остатки Стандартные остатки
1 9,610909091 -0,610909091 -1,528044662
2 7,305454545 -0,305454545 -0,764022331
3 11,91636364 0,083636364 0,209196591
4 14,22181818 0,778181818 1,946437843
5 16,52727273 0,472727273 1,182415512
6 18,83272727 0,167272727 0,418393181
7 21,13818182 -0,138181818 -0,34562915
8 23,44363636 -0,043636364 -0,109146047
9 25,74909091 -0,149090909 -0,372915662
10 28,05454545 -0,254545455 -0,636685276

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение

Оценка качества уравнения регрессии при помощи коэффициентов детерминации. Проверка нулевой гипотезы о значимости уравнения и показателей тесноты связи с помощью F-критерия Фишера.

Стандартные ошибки коэффициентов.

Уравнение регрессии имеет вид:

Y =3378,41 -494,59X 1 -35,00X 2 +75,74X 3 -15,81X 4 +80,10X 5 +59,84X 6 +
(1304,48) (226,77) (10,31) (277,57) (287,54) (35,31) (150,93)
+127,98X 7 -78,10X 8 -437,57X 9 +451,26X 10 -299,91X 11 -14,93X 12 -369,65X 13 (9)
(22,35) (31,19) (97,68) (331,79) (127,84) 86,06 (105,08)

Для заполнения таблицы «Регрессионная статистика» (Таблица 9) находим:

1. Множественный R – r-коэффициент корреляции между у и ŷ.

Для этого следует воспользоваться функцией КОРРЕЛ, введя массивы у и ŷ.

Полученное в результате число 0,99 близко к 1, что показывает очень сильную связь между опытными данными и расчетными.

2. Для расчета R-квадрат находим:

Объясняемая ошибка 17455259,48,

Необъясняемая ошибка .

Следовательно, R-квадрат равен .

Соответственно 97% опытных данных объяснимы полученным уравнением регрессии.

3. Нормированный R-квадрат находим по формуле

Этот показатель служит для сравнения разных моделей регрессии при изменении состава объясняющих переменных.

4. Стандартная ошибка квадратный корень из выборочной остаточной дисперсии:

В результате получаем следующую таблицу.

Таблица 9.

Заполнение таблицы «Дисперсионный анализ»

Большая часть данных уже получена выше. (Объясняемая и необъясняемая ошибка).

Рассчитаем t wx:val="Cambria Math"/>13 = 1342712,27"> .



Оценку статистической значимости уравнения регрессии в целом проведем с помощью F -критерия Фишера. Уравнение множественной регрессии значимо (иначе – гипотеза H 0 о равенстве нулю параметров регрессионной модели, т.е. отвергается), если

, (10)

где - табличное значение F-критерия Фишера.

Фактическое значение F - критерия по формуле составит:

Для расчета табличного значения критерия Фишера используется функция FРАСПОБР (Рисунок 4).

Степень свободы 1: p=13

Степень свободы 2: n-p-1 = 20-13-1=6

Рисунок 4. Использование функции FРАСПОБР в Excel.

F табл = 3,976 < 16,88, следовательно, модель адекватна опытным данным.

Значимость F рассчитывается с помощью функции FРАСП. Эта функция возвращает F-распределение вероятности (распределение Фишера) и позволяет определить, имеют ли два множества данных различные степени разброса результатов.

Рисунок 5. Использование функции FРАСП в Excel.

Значимость F = 0,001.

Основная цель регрессионного анализа состоит в определении аналитической формы связи, в которой изменение результативного признака обусловлено влиянием одного или нескольких факторных признаков, а множество всех прочих факторов, также оказывающих влияние на результативный признак, принимается за постоянные и средние значения.
Задачи регрессионного анализа :
а) Установление формы зависимости. Относительно характера и формы зависимости между явлениями, различают положительную линейную и нелинейную и отрицательную линейную и нелинейную регрессию.
б) Определение функции регрессии в виде математического уравнения того или иного типа и установление влияния объясняющих переменных на зависимую переменную.
в) Оценка неизвестных значений зависимой переменной. С помощью функции регрессии можно воспроизвести значения зависимой переменной внутри интервала заданных значений объясняющих переменных (т. е. решить задачу интерполяции) или оценить течение процесса вне заданного интервала (т. е. решить задачу экстраполяции). Результат представляет собой оценку значения зависимой переменной.

Парная регрессия - уравнение связи двух переменных у и х: , где y - зависимая переменная (результативный признак); x - независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.
Линейная регрессия: y = a + bx + ε
Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.
Регрессии, нелинейные по объясняющим переменным:

Регрессии, нелинейные по оцениваемым параметрам: Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, Используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических минимальна, т.е.
.
Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции для линейной регрессии :

и индекс корреляции - для нелинейной регрессии:

Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации .
Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
.
Допустимый предел значений - не более 8-10%.
Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения:
.

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
,
где - общая сумма квадратов отклонений;
- сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
- остаточная сумма квадратов отклонений.
Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R 2:

Коэффициент детерминации - квадрат коэффициента или индекса корреляции.

F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Но о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического F факт и критического (табличного) F табл значений F-критерия Фишера. F факт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
,
где n - число единиц совокупности; m - число параметров при переменных х.
F табл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.
Если F табл < F факт, то Н о - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Н о не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н о о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
; ; .
Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:



Сравнивая фактическое и критическое (табличное) значения t-статистики - t табл и t факт - принимаем или отвергаем гипотезу Н о.
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством

Если t табл < t факт то H o отклоняется, т.е. a, b и не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт то гипотеза Н о не отклоняется и признается случайная природа формирования а, b или .
Для расчета доверительного интервала определяем предельную ошибку D для каждого показателя:
, .
Формулы для расчета доверительных интервалов имеют следующий вид:
; ;
; ;
Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения . Вычисляется средняя стандартная ошибка прогноза :
,
где
и строится доверительный интервал прогноза:
; ;
где .

Пример решения

Задача №1 . По семи территориям Уральского района За 199Х г. известны значения двух признаков.
Таблица 1.
Требуется: 1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной (предварительно нужно произвести процедуру линеаризации переменных, путем логарифмирования обеих частей);
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации и F-критерий Фишера.

Решение (Вариант №1)

Для расчета параметров a и b линейной регрессии (расчет можно проводить с помощью калькулятора).
решаем систему нормальных уравнений относительно а и b:
По исходным данным рассчитываем :
y x yx x 2 y 2 A i
l 68,8 45,1 3102,88 2034,01 4733,44 61,3 7,5 10,9
2 61,2 59,0 3610,80 3481,00 3745,44 56,5 4,7 7,7
3 59,9 57,2 3426,28 3271,84 3588,01 57,1 2,8 4,7
4 56,7 61,8 3504,06 3819,24 3214,89 55,5 1,2 2,1
5 55,0 58,8 3234,00 3457,44 3025,00 56,5 -1,5 2,7
6 54,3 47,2 2562,96 2227,84 2948,49 60,5 -6,2 11,4
7 49,3 55,2 2721,36 3047,04 2430,49 57,8 -8,5 17,2
Итого 405,2 384,3 22162,34 21338,41 23685,76 405,2 0,0 56,7
Ср. знач. (Итого/n) 57,89 54,90 3166,05 3048,34 3383,68 X X 8,1
s 5,74 5,86 X X X X X X
s 2 32,92 34,34 X X X X X X


Уравнение регрессии: у = 76,88 - 0,35х. С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта.
Рассчитаем линейный коэффициент парной корреляции:

Связь умеренная, обратная.
Определим коэффициент детерминации:

Вариация результата на 12,7% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения . Найдем величину средней ошибки аппроксимации :

В среднем расчетные значения отклоняются от фактических на 8,1%.
Рассчитаем F-критерий:

поскольку 1< F < ¥ , следует рассмотреть F -1 .
Полученное значение указывает на необходимость принять гипотезу Но о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.
1б. Построению степенной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:


где Y=lg(y), X=lg(x), C=lg(a).

Для расчетов используем данные табл. 1.3.

Таблица 1.3

Y X YX Y 2 X 2 A i
1 1,8376 1,6542 3,0398 3,3768 2,7364 61,0 7,8 60,8 11,3
2 1,7868 1,7709 3,1642 3,1927 3,1361 56,3 4,9 24,0 8,0
3 1,7774 1,7574 3,1236 3,1592 3,0885 56,8 3,1 9,6 5,2
4 1,7536 1,7910 3,1407 3,0751 3,2077 55,5 1,2 1,4 2,1
5 1,7404 1,7694 3,0795 3,0290 3,1308 56,3 -1,3 1,7 2,4
6 1,7348 1,6739 2,9039 3,0095 2,8019 60,2 -5,9 34,8 10,9
7 1,6928 1,7419 2,9487 2,8656 3,0342 57,4 -8,1 65,6 16,4
Итого 12,3234 12,1587 21,4003 21,7078 21,1355 403,5 1,7 197,9 56,3
Среднее значение 1,7605 1,7370 3,0572 3,1011 3,0194 X X 28,27 8,0
σ 0,0425 0,0484 X X X X X X X
σ 2 0,0018 0,0023 X X X X X X X

Рассчитаем С иb:


Получим линейное уравнение:.
Выполнив его потенцирование, получим:

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата. По ним рассчитаем показатели: тесноты связи - индекс корреляции и среднюю ошибку аппроксимации

Характеристики степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.

. Построению уравнения показательной кривой

предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:

Для расчетов используем данные таблицы.

Y x Yx Y 2 x 2 A i
1 1,8376 45,1 82,8758 3,3768 2034,01 60,7 8,1 65,61 11,8
2 1,7868 59,0 105,4212 3,1927 3481,00 56,4 4,8 23,04 7,8
3 1,7774 57,2 101,6673 3,1592 3271,84 56,9 3,0 9,00 5,0
4 1,7536 61,8 108,3725 3,0751 3819,24 55,5 1,2 1,44 2,1
5 1,7404 58,8 102,3355 3,0290 3457,44 56,4 -1,4 1,96 2,5
6 1,7348 47,2 81,8826 3,0095 2227,84 60,0 -5,7 32,49 10,5
7 1,6928 55,2 93,4426 2,8656 3047,04 57,5 -8,2 67,24 16,6
Итого 12,3234 384,3 675,9974 21,7078 21338,41 403,4 -1,8 200,78 56,3
Ср. зн. 1,7605 54,9 96,5711 3,1011 3048,34 X X 28,68 8,0
σ 0,0425 5,86 X X X X X X X
σ 2 0,0018 34,339 X X X X X X X

Значения параметров регрессии A и В составили:


Получено линейное уравнение: . Произведем потенцирование полученного уравнения и запишем его в обычной форме:

Тесноту связи оценим через индекс корреляции :

Понравилась статья? Поделиться с друзьями: