Крупнейшие ветряные электростанции мира. Принцип работы двигателей ветряной электростанции

Полезные ископаемые, добываемые из недр земли и используемые человечеством в качестве энергоресурсов, к сожалению, не безграничны. С каждым годом их стоимость увеличивается, что объясняется сокращением уровня добычи. Альтернативным и набирающим обороты вариантом энергоснабжения выступают ветряные электростанции для дома. Они позволяют преобразовывать энергию ветра в переменный ток , что дает возможность обеспечивать все потребности в электричестве любых бытовых приборов. Главное преимущество таких генераторов – это абсолютная экологичность, а также бесплатное пользование электричеством неограниченное количество лет. Какие еще преимущества имеет ветрогенератор для дома, а также особенности его эксплуатации, разберем далее.

Еще древние люди заметили, что ветер может стать отличным помощником в осуществлении множества работ. Ветряные мельницы, позволявшие превращать зерно в муку, не затрачивая собственных сил, стали родоначальниками первых ветрогенераторов.

Ветряные электростанции состоят из определенного количества генераторов, способных получать, преобразовывать и накапливать энергию ветра в переменный ток. Они вполне могут обеспечить целый дом электроэнергией, которая берется из ниоткуда.

Однако, нужно сказать, что затраты на оборудование и их обслуживание не всегда дешевле , нежели стоимость центральных электросетей.

Преимущества и недостатки

Итак, прежде чем присоединиться к сторонникам бесплатной энергии, нужно осознать, что ветряные электростанции имеют не только преимущества, но и определенные недостатки. Из положительных сторон использования энергии ветра в быту можно выделить следующие:

  • способ абсолютно экологически чистый и не вредит окружающей среды;
  • простота конструкции;
  • легкость эксплуатации;
  • независимость от электросетей.

Домашние мини-генераторы могут, как частично обеспечивать электричеством, так и стать полноценным его заменителем, преобразуясь в электростанции.

Однако не нужно забывать про недостатки , которыми являются:

  • высокая стоимость оборудования;
  • окупаемость наступает не ранее чем через 5-6 лет использования;
  • относительно небольшие коэффициенты полезного действия, отчего страдает мощность;
  • требует наличия дорогостоящего оборудования: аккумулятор и генератор, без которого невозможна работа станции в безветренные дни.

Чтобы не потратить уйму денег впустую, перед покупкой всего необходимого оборудования, следует оценить рентабельность электростанции. Для этого высчитывают среднюю мощность дома (сюда входят мощности всех используемых электроприборов), количество ветреных дней в году, а также оценивают местность, где будут располагаться ветряки.

Основные конструктивные элементы

Простота возведения электростанции объясняется примитивностью конструктивных элементов.

Чтобы пользоваться энергией ветра, потребуются такие детали :

  • ветряные лопасти – захватывают поток ветра, передавая импульс ветрогенератору;
  • ветрогенератор и контроллер – способствуют преобразованию импульса в постоянный ток;
  • аккумулятор – накапливает энергию;
  • инвертор – помогает преобразовывать постоянный ток в переменный.

Ветряная электростанция (ВЭС) — альтернативный экологичный источник энергии. ВЭС представляет собой несколько распределённых или сосредоточенных ветроэлектрических установок (ветрогенераторов или ВЭУ), соединённых в общую сеть (каскады). Крупнейшие ВЭС могут состоять из сотни и более ветрогенераторов, работающих как на собственные, так и на один общий энергоблок. Для ВЭС наиболее эффективны регионы со средней скоростью ветра более 4,5 м/с.

Россия располагает крупными ветроэнергитическими ресурсами, в сумме ветропотенциал страны оценивается приблизительно в 14000 ТВт час/год. Крупнейшая ветровая станция России — Зеленоградская ВЭУ (5,1 МВт), также отметим Анадырскую ВЭС, Заполярную и ВЭС Тюпкильды. Общая мощность работающих ВЭС России более 16,5 МВт. Кроме электрической, ветровая энергия используется в получении тепловой и механической энергий.

"Зеленоградская ВЭУ расположенна в районе посёлка Куликово Зеленоградского района Калининградской области.

ВЭУ преобразует кинетическую энергию воздушных потоков в механическую, которая используется для вращения ротора генератора электротока. Промышленные ВЭУ используются в построении ветряных электростанций. Их мощность может достигать 7,5 МВт, она зависит от конструкции ветряка, силы воздушного потока, плотности воздуха и площади обдуваемой поверхности. Промышленная ВЭУ обычно состоит из фундамента, силового шкафа управления, башни, лестницы, поворотного механизма, гондолы, электрогенератора, механизма слежения за параметрами ветра, тормозной системы, трансмиссии, лопастей, обтекателя, коммуникаций и системы защиты от молний. Ветротурбины бывают с вертикальной осью вращения (карусельные лопастные и т.д.) и горизонтально-осевые — кругового вращения, наиболее распространённые из-за простоты и высокого КПД.

Устройство ветрогенератора включает в себя ветротурбину (раскручиваемую лопастями или ротором) и электрогенератор. Полученное с генератора электричество обычно поступает на устройство управления аккумуляторами, после чего накапливается в аккумуляторах, и с помощью инвертора, подключённого в электросеть, преобразуется в переменный ток необходимой силы, частоты и напряжения (например: 50 Гц/220 В). ВЭУ на выходе электрорегулятора имеет 24, 48 или 96 вольт постоянного тока. Батареи аккумулятора накапливают энергию для использования в безветрие. Принципиальную электросхему взаимодействия ВЭУ с устройствами можно как угодно модифицировать и улучшать.

Типы ветровых электростанций.

Наземная — самый распространённый вид. Ветрогенераторы здесь размещены на возвышенностях (горы, холмы). Самой крупной ВЭС считается калифорнийская «Альта» в США с мощностью 1,5 ГВт. Ветрогенераторы на высоте более 500 м над уровнем моря - это горная разновидность наземных станций.

Шельфовая строится в море, в 10-60 км от берега. Даёт преимущество в отсутствии выделенных сухопутных территорий и высокую эффективность в силу постоянства морских ветров. В сравнении с наземной обладает большей дороговизной.

Крупнейшая станция «London Array» в Великобритании производит 630 МВт электроэнергии.

Прибрежная строится в прибрежных зонах морей и океанов, что обусловлено суточными морскими бризами.

Плавающая — сравнительно новый вид. Устанавливается на плавающей платформе на некотором удалении от берега.

Парящая, где ветровые турбины размещены высоко над землёй с целью использования более сильных и стойких воздушных потоков.

Преимущества ВЭУ:

  1. Дешевизна установки и обслуживания
  2. Отсутствие потребности в большом персонале
  3. Экологичность (даже при разрушении), отсутствие выбросов в атмосферу, нарушения экосистемы и ландшафта
  4. Восполняемость источника энергии
  5. Отсутствует нужда в специальной выделенной зоны вокруг станции
  6. Высокий уровень чистой прибыли владельцам в связи с высоким отношением современной стоимости электроэнергии к минимальным затратам на получение этой энергии

Недостатки ВЭУ:

  1. Высокий входной барьер в бизнес. Строительство ветряных ферм, точные расчёты определения местности, основывающиеся на многолетних показаниях
  2. Невозможность точного прогноза количества производимой энергии в силу стихийной природы ветра
  3. Малая мощность
  4. Высокий уровень шума, который может негативно влиять на окружающую среду (однако современные технологии позволяют добиться приближения уровня шума к уровню естественной среды уже в 30 метрах от турбины)
  5. Вероятность вреда для птиц и искажения телерадиосигналов

Проекты ветряных установок будущего:

Ветростебли вместо лопастей. Установка в проекте «зелёного» города без машин Масдара близ Абу-Даби. 1203 энергоэффективных стебля высотой 55 м на расстоянии друг от друга в 10-20 м будут «расти» из земли, покачиваться от ветра и генерировать таким образом энергию путём сжатия керамических дисков электродных слоёв.

Сверхмассивный ветряк Aerogenerator X отличается от классических ветряков своими внушительными размерами и выработкой энергии в 3 раза больше, чем обычный ветряк (10 МВт). Размах лопастей 275 м. Конструкция используется в ширину, а не ввысь. Ветряк вращается над морской гладью как карусель.

Норвежский город турбин на побережье Ставангер. Так как Евросоюз поставил цель обеспечения энергией хотя бы на 20% от природных сил, то не исключено что Норвегия станет основным производителем энергии через ветер и воду. Множество связанных ветроустановок будут настоящим городом с двумя млн. рабочих мест. Этой энергии должно хватить на Норвегию и часть Европы. К 2020 г. разработчики рассчитывают обеспечивать 12% энергии от энергии во всём мире. Экологически чистые турбины сберегут более 10700 млн. тонн выбросов двуокиси углерода.

Ветровая энергия

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры — от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Еще в Древнем Египте за три с половиной тысячи лет до нашей эры применялись ветровые двигатели для подъема воды и размола зерна. За пятьдесят с лишним веков ветряные мельницы почти не изменили свой облик. Например, в Англии имеется мельница, построенная в середине XVII в. Несмотря на свой преклонный возраст, она исправно трудится и по сей день. В России до революции насчитывалось приблизительно 250 тыс. ветряных мельниц, общая мощность которых составляла около 1,5 млн. кВт. На них размалывалось до 3 млрд. пудов зерна в год.

Техника XX века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой — получение электроэнергии. В начале века Н. Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания.

Ветряные мельницы оказались прекрасными источниками даровой энергии. Неудивительно, что со временем их стали использовать не только для размола зерна. Ветряки вращали дисковые пилы на больших лесопилках, поднимали грузы на большие высоты, использовались для подъема воды. Наряду с водяными мельницами они оставались, практически, самыми мощными машинами прошлого. В той же Голландии, например, где ветряков было больше всего, они успешно работали до середины нашего века. Часть их действует и в настоящее время.

Что интересно, мельницы в средневековье вызывали у некоторых суеверный страх — настолько непривычными были даже простейшие механические приспособления. Мельникам приписывали общение с нечистой силой.

В наши дни к созданию конструкций ветроколеса — сердца любой ветроэнергетической установки — привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Типы ветрогенераторов

Разработано большое количество ветрогенераторов. В зависимости от ориентации оси вращения по отношению к направлению потока ветрогенераторы могут быть классифицированы:

С горизонтальной осью вращения, параллельной направлению ветрового потока;
с горизонтальной осью вращения, перпендикулярной направлению ветра (подобные водяному колесу);
с вертикальной осью вращения, перпендикулярной направлению ветрового потока.

Здесь — сайт ветроэнергетики. НПГ «САЙНМЕТ» является отечественным РАЗРАБОТЧИКОМ И ПРОИЗВОДИТЕЛЕМ ветроэнергетических установок (ветрогенераторов), одним из мировых лидеров в области автономной ветроэнергетики – обладателем Гран-при и трех золотых медалей Всемирной Брюссельской выставки инноваций «Eureka-2005». НПГ «САЙНМЕТ» представляет автономные ветроэнергетические установки: ветрогенератор мощностью 5 и ветрогенератор мощностью 40кВт, а также ветросолнечные и ветродизельные установки на их основе.

Ветродизельные энергетические установки могут быть объединены в локальные сети, а также сопряжены с солнечными батареями. Ветродизельные агрегаты, в зависимости от ветрового потенциала местности, позволяют экономить 50-70% топлива, потребляемого дизель-генераторами сравнимой мощности.

Основные конструктивные решения ветрогенераторов защищены патентами на изобретения.

Энергия ветра

Человек использует энергию ветра с незапамятных времен. Но его парусники, тысячелетиями бороздившие просторы океанов, и ветряные мельницы использовали лишь ничтожную долю из тех 2,7 трлн. кВт энергии, которыми обладают ветры, дующие на Земле. Полагают, что технически возможно освоение 40 млрд. кВт, но даже это более чем в 10 раз превышает гидроэнергетический потенциал планеты.

Почему же столь обильный доступный и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Ветровой энергетический потенциал Земли в 1989 году был оценен в 300 млрд. кВт * ч в год. Но для технического освоения из этого количества пригодно только 1,5%. Главное препятствие для него – рассеянность и непостоянство ветровой энергии. Непостоянство ветра требует сооружения аккумуляторов энергии, что значительно удорожает себестоимость электроэнергии. Из-за рассеянности при сооружении равных по мощности солнечных и ветровых электростанций для последних требуется в пять раз больше площади (впрочем, эти земли можно одновременно использовать и для сельскохозяйственных нужд).

Но на Земле есть и такие районы, где ветры дуют с достаточным постоянством и силой. (Ветер, дующий со скоростью 5-8 м/сек., называется умеренным, 14-20 м/сек. – сильный, 20-25 м/сек. – штормовым, а свыше 30 м/сек. – ураганным). Примерами подобных районов могут служить побережья Северного, Балтийского, арктических морей.

Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину – генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

Основное направление использования энергии ветра – получение электроэнергии для автономных потребителей, а также механической энергии для подъема воды в засушливых районах, на пастбищах, осушения болот и др. В местностях, имеющих подходящие ветровые режимы, ветроустановки в комплекте с аккумуляторами можно применять для питания автоматических метеостанций, сигнальных устройств, аппаратуры радиосвязи, катодной защиты от коррозии магистральных трубопроводов и др.

По оценкам специалистов, энергию ветра можно эффективно использовать там, где без существенного хозяйственного ущерба допустимы кратковременные перерывы в подаче энергии. Использование же ветроустановок с аккумулированием энергии позволяет применять их для снабжения энергией практически любых потребителей.

Мощные ветровые установки стоят обычно в районах с постоянно дующими ветрами (на морских побережьях, в мелководных прибрежных зонах и т.д.) Такие установки уже используют в России, США, Канаде, Франции и других странах.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.

При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток её в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накапливает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород, Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Литература

    Наука и жизнь, №1, 1991 г. М.: Правда.

    Техника молодёжи, №5, 1990 г.

    Феликс Р. Патури Зодчие ХХI века М.: ПРОГРЕСС, 1979.

    Наука и жизнь, No10, 1986 г. М.: Правда.

    Багоцкий В.С., Скундин А.М.

    Химические источники тока М.: Энергоиздат, 1981. 360 с.

    Коровин Н.В. Новые химические источники тока М.: Энергия, 1978. 194 с.

    Д-р Дитрих Берндт Конструкторский уровень и технические границы применения герметичных батарей А/О ВАРТА Беттери Научно-исследовательский центр

    Лаврус В.С. Батарейки и аккумуляторы К.: Наука и техника, 1995. 48 с.

    Наука и жизнь, №5…7, 1981 г. М.: Правда.

    Мурыгин И.В. Электродные процессы в твердых электролитах М.: Наука, 1991. 351 с.

    T he Power Protection Handbook American Power Conversion

    Шульц Ю. Электроизмерительная техника 1000 понятий для практиков М.: Энергоиздат, 1989. 288 с.

    Наука и жизнь, №11, 1991 г. М.: Правда.

    Ю. С. Крючков, И. Е. Перестюк Крылья Океана Л.: Судостроение, 1983. 256 с.

    В. Брюхань. Ветроэнергетический потенциал свободной атмосферы над СССР Метрология и гидрология. №6, 1989 г.

    New scientist №1536, 1986 г.

    Daily Telegraf, 25.09.1986 г.

Каркас одноэтажных зданий состоит из поперечных рам, шарнирно связанных поверху стропильными конструкциями. Поперечная жесткость здания обеспечивается колоннами, жестко защемленными в фундаменте и диском покрытия.

В зданиях с кровлей, устраиваемой по сплошному настилу из крупноразмерных железобетонных плит, условия работы отдельных рам облегчаются за счет частичной передачи нагрузок «жесткой» кровлей на смежные рамы.

Здания с кровлей из плит, укладываемых по прогонам, находятся в менее благоприятных условиях, т.к. независимость деформации отдельных рам при воздействии на них местных нагрузок может привести в ряде случаев к ухудшению эксплуатационных свойств здания.

Поэтому при проектировании зданий с мостовыми кранами значительной грузоподъемности, а также бескрановых, имеющих большую высоту, следует предусматривать продольные связи по верхним поясам стропильных конструкций, до некоторой степени объединяющих работу рам в поперечном направлении.

Обеспечение жесткости здания в продольном направлении только за счет колонн экономически оправдывается лишь для бескрановых зданий: с пролетами L ≤ 24 м и высотами Н ≤ 8,4 м, а также для зданий с L= 30 м и Н ≤7,2 м. Для зданий большой высоты и зданий с мостовыми кранами необходимо предусматривать вертикальные связи жесткости в продольном направлении.

Такие связи устраивают между колоннами и при необходимости в покрытии здания.

Передача ветровых нагрузок с торцовых стен на колонны и вертикальные связи через конструкции кровли целесообразна только для зданий определенных пролетов и высоты. В большепролетных зданиях более или менее значительной высоты такое использование кровли затрудняет крепление стропильных конструкций к колоннам, усложняет конструкции, обеспечивающие устойчивость покрытий, а в ряде случаев и вообще не может быть осуществлено без нарушения целостности кровли, прочности креплений ее к стропильным конструкциям.

Торцовые стены таких зданий должны проектироваться с применением горизонтальных ветровых ферм и с передачей на них подавляющей части ветровой нагрузки.

Кровли из относительно мелких изделий, укладываемых по прогонам, могут воспринимать ветровые нагрузки от торцовых стен и передавать их на колонны лишь при условии развязки их системой поперечных горизонтальных связей по верхним поясам стропильных конструкций.

Условия применения таких, а также других второстепенных конструкций (вертикальные связи между фермами, распорки, растяжки) зависят от параметров здания.

Все одноэтажные промышленные здания делят на конструктивно однородные группы в зависимости от типа транспортного оборудования и габаритных характеристик (пролет и высота), которые приведены в таблице 1 ниже.

К группе I относят здания с пролетами до 24 м, имеющих высоту до 8 м, а также здания с пролетами 30 м и высотой до 7 м.

К группе II относятся здания, имеющие поперечные температурные швы при: L= 18 м и Н = 9 – 15 м; L= 24 м и Н = 9 – 12 м; L ≥ 30 м и Н = 9 – 10 м;

К группе III относятся здания с поперечными температурными швами, но более высокие, чем здания группы II, а также здания без поперечных температурных швов с пролетами L= 18 м, 24 м, 30 м, высотой более 12 м.

Все здания указанной номенклатуры, за исключением зданий группы А – б — I, требуют применения связей.

Таблица 1

Группа зданий по высоте с беспрогонными кровлями с кровлей по прогонам
с мостовыми кранами без мостовых кранов с мостовыми кранами без мостовых кранов
Низкие А – а — I А – б — I Б – а — I Б –б — I
Средние А – а — II А – б — II Б – а — II Б –б — II
Высокие А – а — III А – б — III Б – а — III Б –б — III

Вертикальные связи жесткости между колоннами устанавливают в середине температурного блока каждого продольного ряда. В зданиях с мостовыми кранами вертикальные связи по колоннам устраиваются только на высоту до низа подкрановых балок (рис.1), а в зданиях без мостовых кранов – на полную высоту колонн. Между стальными колоннами крановых зданий связи устанавливают еще и в надкрановых частях колонн, как в середине температурного блока, так и в крайних его шагах (рис. 2 а, б). При высоте подкрановой части стальной колонны превышающей 8,5 м связи сдваивают (рис. 2 в).

По схеме стальные связи между колоннами подразделяются на крестовые и портальные. Крестовые характерны 6-метровым шагам колонн, портальные – 12-метровым.

2. Вертикальные связи по стальным колоннам:

а – крестовые связи; б – портальные связи; в – крестовые сдвоенные связи

Капитальные стены, расположенные в распор между колоннами и прочно связанные с ними, могут быть использованы для обеспечения продольной жесткости здания вместо вертикальных связей лишь при гарантии, что эти стены не будут подлежать разборке при эксплуатации или реконструкции здания.

Во всех зданиях с кровлей по прогонам необходимо предусматривать горизонтальные поперечные связи жесткости, которые устанавливают по верхним поясам стропильных конструкций в крайних панелях каждого температурного блока, независимо от наличия или отсутствия ветровых ферм.

В высоких зданиях требуется устройство горизонтальных ветровых ферм в торцах зданий. В зданиях с мостовыми кранами ветровые фермы устанавливаются на уровне верха подкрановых балок (рис.3).

Рис. 3. Схема расположения ветровой фермы в уровне подкрановых балок

Для передачи давления ветровых ферм по линии подкрановых балок зазоры между торцами балок заполняют бетоном, а крепление подкрановых балок к колоннам связевой панели рассчитывается на восприятие всех горизонтальных сил (включая силы от продольного торможения кранов), действующих по линии подкрановых балок.

В зданиях без мостовых кранов ветровые фермы необходимо располагать в уровне верха вертикальных связей.

Во всех случаях применения ветровых ферм в зданиях без подстропильных конструкций между колоннами на уровне ветровых ферм должны быть поставлены распорки для передачи ветрового давления от ферм на вертикальные связи.

В зданиях с подстропильными конструкциями крепление их к колоннам рассчитывается на горизонтальные нагрузки от ветровых ферм. Зазоры между торцами подстропильных конструкций рекомендуется заполнять бетоном.

Все продольные нагрузки, воспринимаемые отдельными элементами здания, в конечном счете, должны быть переданы вертикальным связям в продольных рядах колонн или распределены между колоннами. Необходимость во второстепенных устройствах для обеспечения прочности узлов и устойчивости элементов покрытия, участвующих в такой передаче, в значительной мере определяется типом кровли.

В зданиях типов А – а – I, II, III и А – б – I с жесткими беспрогонными кровлями ветровые нагрузки распределяются покрытием между всеми колоннами в продольных рядах. Крепление каждой из стропильных конструкций к колоннам в этих случаях должно быть рассчитано на воспринимаемую ею часть общей ветровой нагрузки.

При невозможности обеспечить необходимую прочность крепления стропильных конструкций к колоннам (например, в покрытиях имеющих стропильные конструкции с большой высотой на опорах) устанавливают вертикальные связи между опорными стойками стропильных конструкций в крайних панелях температурного блока. При этом устанавливают и распорки между всеми колоннами ряда по их оголовкам для распределения, воспринимаемого вертикальной связью, ветрового давления между всеми колоннами ряда.

В зданиях типа А – б – II, в которых вертикальные связи между колоннами устраиваются на всю высоту колонн, ветровые усилия передаются покрытием на колонны лишь в узлах крепления стропильных конструкций к колоннам связевой панели. В этом случае необходимо устраивать дополнительные связи в покрытии. Так, при небольшой высоте стропильных конструкций на опоре между колоннами каждого продольного ряда устанавливают распорки, передающие ветровые нагрузки на вертикальные связи. Крепление каждой из стропильных конструкций к колоннам будет при этом работать лишь на приходящуюся на него часть общей ветровой нагрузки. А при значительной высоте стропильных конструкций на опоре (стальные и железобетонные фермы с параллельными поясами, железобетонные безраскосные фермы и т.п.) следует устанавливать вертикальные связи (С1) между опорными стойками ферм в крайних шагах температурного блока, соединяемые непрерывной цепью распорок. Стальные стропильные фермы дополнительно развязываются по нижним поясам раскосами (С2) и крепятся к остальным фермам с помощью растяжек по нижнему поясу (С3) и распорок по верхнему поясу (С4) (рис. 4).

Рис. 4. Схема связей в покрытии по стальным фермам

В зданиях с мостовыми кранами тяжелого или особо тяжелого режимов работы по продольным краям каждого температурного блока в уровне нижнего пояса стропильных ферм устанавливают распорки (С5) и раскосы (С6) (рис.4).

В зданиях с фонарями в пределах фонаря устанавливаются распорки в середине пролета, соединяющие узлы верхних поясов стропильных конструкций, а также вертикальные и горизонтальные связи в крайних шагах температурного блока.

Связи проектируют из прокатных, гнутых, гнутосварных профилей или электросварных труб.

Крепят их с помощью болтов нормальной точности или высокопрочных, а также на сварке.

Дата публикования: 2014-10-17; Прочитано: 8172 | Нарушение авторского права страницы

Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.003 с)…

С использованием энергии ветра человечество знакомо с незапамятных времен. Когда-то неизвестный изобретатель приладил парус к неказистому плавучему средству, и с его помощью через столетия вся Земля была обследована пытливыми мореплавателями. Ветряные мельницы даже в наше время во многих странах исправно служат человеку.

Но сегодня использование ветра подразумевает, прежде всего, получение электроэнергии. Попытаемся разобраться, насколько это просто, дешево и удобно. Для тех, кто хочет сразу услышать итог, вывод: ветряная электроэнергия никогда не станет дешевле энергии, полученной из других источников: тепловых, атомных или гидроэлектростанций.

Поэтому заниматься ветряными электростанциями для дома имеет смысл только тем, у кого руки чешутся приспособить доставшийся «по случаю» готовый генератор, или энтузиастам экологически чистой энергии, фанатично желающим спасти планету от экологической катастрофы. Других причин использовать ветряную энергию при подведенном питании от внешних электрических сетей просто не придумаешь.

Для начала немного сведений о возможностях использования энергии ветра. При воздействии ветра на лопасти турбины, эффективность отбора энергии (КПД) не может превышать 59%. Это значение получили в своих работах ряд ученых (Ланчестер, Бец, Жуковский) еще в 1920 г. С тех пор оно известно как «предел Беца».

Есть ли смысл считать КПД ветряного генератора , если он приводится в действие дармовым источником неограниченной мощности? Конечно, есть! Зная КПД преобразования, можно оценить необходимую мощность электростанции, а затем - насколько похудеет ваш кошелек после ее приобретения.

Предельная мощность, которую можно «отнять» у ветра, равна площади, на которую он воздействует (площадь обмаха пропеллера), умноженной на скорость ветра в кубе и на упомянутый выше КПД, равный 0,6. Выразив все величины в системе СИ, получим, что 1м2 турбины при скорости ветра 2 м/сек отбирает мощность аж...4,8 Вт. При скорости ветра 8 м/сек (номинальная скорость большинства ветряных генераторов), отбор с единицы площади возрастет до 307 Вт.

Теперь информация к размышлению: реальный КПД для домашних установок нужно брать не более 0,3. Время работы ветряных электростанций при оптимальной скорости ветра колеблется от 10 до 15% в год в климатических условиях стран СНГ.

Поэтому полученную из формулы мощность ветряной электростанции необходимо увеличить еще в 4-5 раз. На практике рекомендуют устанавливать ветряную электростанцию, ориентируясь не столько на технические показатели, сколько на финансовые возможности, по принципу: «Чем больше, тем лучше». С мечтой установить мощную и, одновременно, компактную установку необходимо сразу расстаться. Одно другому противоречит в принципе.

Конструкция ветряной электростанции, в общем случае, состоит из генератора, выпрямительного устройства, аккумуляторной батареи и инвертора для преобразования напряжения в привычное значение 220В. Контроль и управление всеми блоками и элементами электростанции выполняет микропроцессорный контроллер или более простые логические схемы.

Изучая технические характеристики ветряных электростанций , предпочтение необходимо отдавать тем, у которых скорость начала движение ротора, начальная скорость зарядки аккумуляторов и скорость, при которой они выходят на рабочий режим, минимальны. Чем шире диапазон рабочих скоростей ветра, тем больше вероятность получить энергию. Стоимость в этом случае играет вторичную роль: зачем брать установку дешевле, если она в вашем регионе будет работать несколько дней в году?

Теперь пришло время прицениться к продукции фирм, предлагающих готовые комплекты оборудования. О самодельных ветряных электростанциях здесь вообще не будем говорить. Даже лучшие образцы промышленного изготовления имеют КПД не более 30%, а самодельные конструкции из подсобных материалов смогут производить разве что шум.

Все разнообразие конструкций ветряных генераторов можно свести к двум большим группам: с горизонтальным расположением ротора генератора и генераторы с ротором вертикального типа.

Горизонтальные генераторы флюгерного типа обладают более высоким КПД, меньшей материалоемкостью. Но требуют применения мачт большей высоты, имеют сложную механическую часть и неудобны в обслуживании. Станции вертикального типа менее экономичны, они имеют большую материалоемкость, но работают в большем диапазоне скоростей ветра и более компактны.

Рассмотрим по одному образцу из наиболее интересных представителей ветряных электростанций каждой группы. Наибольший интерес из электростанций с горизонтальным расположением ротора представляет безредукторный контурный генератор «Windtronics» .

В нем аэродинамическое сопротивление снижено за счет особой конструкции турбины, в которой на концах лопастей закреплены сильные постоянные магниты, а по ободу смонтировано 68 статорных катушек. При таком решении ротор одновременно является и генератором электрической энергии. Специальные закрылки на лопастях позволяют турбине начать движение при скорости ветра 0,2 м/сек. На сегодня это значение является рекордным для генераторов.

При скорости 0,9 м/сек. турбина начинает вырабатывать электричество. Другие типы генераторов при этих значениях скорости ветра даже не могут сдвинуться с места. Вес изделия около 110 кг, диаметр 1,8 метра, уровень шумов - не более 35 дБ.

Благодаря жесткой конструкции, турбина выдерживает скорость ветра до 62,6 сек. Годовая производительность от 1500 до 2750 кВт/ч электроэнергии. Американской фирмой «Honeywell Wind Turbine» в комплекте с турбиной поставляется вся необходимая электроника, рассчитанная на подключение 2 генераторов или солнечной дополнительной панели. Серьезным и единственным недостатком ветряной электростанции является ее цена - 5750 долларов при номинальной мощности генератора всего 1,5 кВт.

Многообещающим представителем электростанций с генератором вертикального типа можно считать турбины «Eddy» компании «Urban Green Energy» . Генераторы очень компактны, почти бесшумны и могут монтироваться даже в городских условиях. При весе генератора 95 кг он занимает площадь чуть больше 2,5 м2.

Турбину можно смонтировать за час, а служит она до 20 лет. Генератор выдерживает ветровые нагрузки до 193 км/час и вырабатывает, в зависимости от модификации, от 2000 до 4000 кВт/ч энергии в год. Главным недостатком является высокая начальная скорость ветра для турбины - 3,2 м/сек. Информации о стоимости генератора пока нет.

Ветряной генератор «Eddy»

Оригинальная форма турбины, напоминающая лепестки розы, натолкнула архитекторов на идею создать электростанцию в виде дерева, на ветвях которого смонтировано от 3 до 12 турбин, Проект получил название «Power Flowers» - «цветочное дерево» и привлек широкое внимание общественности, создав неплохую рекламу генераторам «Eddy» и фирме UGE.

Ветряная электростанция «Power Flowers» с генераторами «Eddy»

О различных конструкциях и моделях электростанций можно очень долго говорить, но объединяет их одно: очень высокая цена. Из анализа предложений фирм можно вывести некую удельную стоимость 1кВт мощности оборудования. Она составляет приблизительно 2000 долларов без монтажных работ. Добавив еще около 500 долларов на монтаж и наладку, мы получим усредненную величину затрат на оборудование, которое произведет вам 2000-3000кВт/ч электрической энергии за год.

По оценкам специалистов, электроэнергия, полученная от экологически чистых источников, дороже обычной в 3-4 раза. При использовании маломощных ветряных электростанций, стоимость энергии может на порядок (в 10 раз) превышать полученную из традиционных источников. Это связано с большими разовыми затратами на оборудование и работами по установке, наладке и обслуживанию ветряных электростанций.

Для того, что бы скрыть этот факт, часто используют утверждение, что с ростом цены на энергоносители экологически чистые источники станут рентабельными. При этом игнорируется то соображение, что с ростом расценок на энергию будет расти и стоимость оборудования, которое обладают значительной материалоемкостью. И перспектив к сокращению подобной «вилки» не предвидится даже в отдаленном будущем.

Если есть непреодолимое желание установить ветряную электростанцию, то сначала необходимо познакомиться с архивом сводок погоды за несколько последних лет в вашем регионе. Подобная информация сейчас доступна в сети и сразу прояснит реальные возможности по использованию ветровой энергии.

Ветряная электростанция для дома является примером альтернативной энергетики. Это оптимальное решение для объекта, на котором отсутствует централизованная подача электроэнергии, а провести линии электропередач к дому слишком дорого. Станция повышенной мощности позволяет полностью удовлетворить все энергетические потребности. Рассмотрим особенности ветрогенераторов для частного дома, их классификацию, особенности обслуживания и самостоятельную установку.

Количество электроэнергии, вырабатываемой современной электростанций для дома, зависит, прежде всего, от погодных условий, а также от времени года. Как правило,

Если скорость ветра соответствует номинальной скорости преимущественного количества моделей ветряных генераторов — 8 м/сек — то с единицы площади можно получить около 307 Вт.

Ветряная электростанция для дома имеет конструкцию, которая состоит из генератора с аккумуляторной батареей, а также выпрямительного устройства с инвертором, необходимым для преобразования напряжения в стандартные 220 В. Все блоки контролируют используя микропроцессорный контроллер либо другую логическую схему.

Какие бывают

Ветряные генераторы отличаются друг от друга конструкциями , которые делятся на две группы:

  • с вертикальным и
  • горизонтальным расположением ротора.

Генераторы вертикального типа считаются менее экономичными. Они имеют большую материалоемкость, но компактные и могут функционировать при широком диапазоне скоростей ветра.

Второй тип характеризуется гораздо высшим КПД и меньшей материалоемкостью . Однако, для ветряных генераторов с горизонтальным расположением ротора требуются мачты большей высоты, поэтому такие ветрогенераторы обладают достаточно сложной механической конструкцией и не так удобны при обслуживании.

По мощности:


Где должен размещаться ветрогенератор

Огромную роль играет место, в котором будет находиться ветряная электростанция.

Не стоит устанавливать ветроэлектростанцию рядом с домами или деревьями, это не позволит получить полную отдачу от используемого ветряка.

Размещая ветрогенератор необходимо принимать во внимание несколько обстоятельств:

  1. Наибольшей силой характеризуется ветер на вершинах холмов, среди степи, возле береговой линии, а также в других местах, где нет различных зданий и больших деревьев.
  2. Следует проинформировать соседей о подключении данной электростанции, чтобы в будущем избежать проблем.
  3. Рекомендуемое расстояние установления ветряка —примерно 300 м от домов соседей.

Не нужно рассчитывать на то, что генератор будет постоянно вырабатывать необходимое количество энергии. Это объясняется тем, что в одном и том же месте скорость ветра может сильно меняться, и это влияет и на количество энергии: если сила ветра колеблется в пределах 10%, то ресурсы производимого электричества может уменьшиться или увеличиться почти на 25%.

Сколько шума производит ветроэлектростанция?

Относительно шумности ветряков следует отметить, что этот недостаток характерен для крупнейших мегаваттных ветряных электростанций. Их лопасти в процессе работы создают инфранизкочастотные колебания. Как правило, их устанавливают на большом расстоянии от населённых пунктов. Ветряки с небольшой мощностью создают низкий шум только при сильном ветре, который не очень превышает естественный фон. Нормой является шум не больше 40 децибел.

Обслуживание ветряной электростанции

Профессиональное обслуживание ветрогенераторов представляет собой целый комплекс работ, к которым относятся:

  1. Обследование электрической станции;
  2. Очистка ветряка от загрязняющих материалов и его помывка;
  3. Косметический ремонт;
  4. Монтаж генератора;
  5. Ремонт деформированных лопастей.

«Умные штуки» помогут сэкономить электричество в доме: .
О том, как диммеры помогают управлять освещением дома дистанционно мы писали .
Еще одно удобство «Умного дома» — для включения и выключения света.

Безопасность

Как и любая другая система, ветряная электростанция может быть небезопасной для человека. В этом случае угрозы связаны с установкой, функционированием и обслуживанием ветряков.

Так, если стопор в генераторе не срабатывает, то он может вращать лопасти до того времени, пока не воспламенится либо же не разрушится. Такие случаи фиксируются довольно редко. В некоторых случаях пожар на гондолах тушится не до конца, поэтому выделяется токсический дым, а также внизу возникает вторичный пожар. Однако, современные модели оснащены специальными автоматическими системами пожаротушения.

На протяжении зимы на лопастях образуется ледяная корка, которая опадает при работе и служит причиной локализованной остановки генератора. Множество моделей имеют большое количество пассивных , останавливающих работу даже при самых незначительных нарушениях.

Какую ветряную электростанцию станцию выбрать

На сегодняшний день на рынке представлен огромный ассортимент ветряных электростанций. Однако выделяют несколько наиболее популярных вариантов:

  1. Американская станция «Windtronics» от компании «Honeywell Wind Turbine»;
  2. Генератор «Eddy».

Специалисты не советуют устанавливать чисто ветряную систему, поэтому в большинстве случаев станция состоит из ветрогенератора с солнечными панелями, инвертера и контроллера заряда, а также аккумулятора.

Цена на малую систему может колебаться в пределах от 90 тысяч до 2,5 миллиона рублей.

Стоимость электростанции зависит от её мощности.

Ветровые электростанции для дома своими руками

Ветрогенератор должен состоять из пяти частей:

  1. Генератор;
  2. Лопасти;
  3. Установка, превращающая ветер в энергию;
  4. Башня для поднятия установки и «ловли» ветра;
  5. Батареи с электронной системой управления.

Для изготовления домашнего генератора можно использовать старый мотор от компьютера с ленточным приводом. Магниты постоянного тока отлично работают.

Для лопастей в домашних условиях подбираются трубы ПВХ. Лучше брать те, которые изготовлены из пластикового материала. Необходимо следить, чтобы размер диаметра был 1/5 от длины трубы. После того как возле её основания будет срезан небольшой квадрат, а в углу просверлено отверстие, следует сгладить края деталей.

Дальше нужно на крепком диске сделать отверстия и с помощью болтов закрепить лопасти. Турбину можно установить на деревянной подставке, предварительно рассчитав её длину. В качестве башни для установки можно использовать железную трубу с небольшим диаметром, а основание сделать из фанеры. С целью защиты дерева от гнили его следует покрыть краской.

Электронную систему управления также можно сделать собственными руками или же купить. Затем все части следует собрать в одно целое и запустить в работу.

Ветряные электростанции – это наиболее альтернативный вариант экономии электрической энергии на сегодняшний день.

Очень часто, такие установки можно встретить на дачных участках.

Люди используют их в тех местах, где загородные участки удалены от основных электрических сетей. Но это не единственная причина. Большинство людей используют ветроэлектростанции в целях экономии и автономности.

Ветряные электростанции имеют свои особенности, которые необходимо знать потенциальным покупателям, иак как от их компетентности зависит продуктивность работы .

Главный стимул приобретения ветряного генератора – это, несомненно, его целесообразность. Одним из главных критериев при достижении данной цели являются требования к ветру. Известно, что среднегодовая скорость ветра около 4.0-4.5 м/с., этого показателя более чем достаточно для того, чтобы домашняя ветряная электростанция была выгодна в использовании, то есть давала возможность экономить электроэнергию.

Для того, чтобы оценить скорость ветра в вашем регионе, вы можете воспользоваться картой ветров. Если у вас возникло желание измерить скорость ветра с максимальной точностью, вам стоит приобрести специальный прибор, который вам в этом поможет.

В состав этого изобретения входит деталь, которая носит название анемометр. С помощью неё к вам поступает сигнал равносильный скорости ветра. Также, вам пригодится прибор, который считывает сигналы, которые подаёт анемометр. Существуют и другие приспособления этого типа.

Для того, чтобы данные получились как можно точными, такие приборы нужно устанавливать высоко, чтобы внешние факторы, такие как деревья, различные постройки и прочее, не искажали результаты прибора.

Компоненты устройства

Очень важно при покупке домашних ветроэлектростанций знать её компоненты, это вам даст возможность быть более компетентными в этом вопросе и подобрать наилучшую модель для своего дома.

В состав ветряной электростанции входит:

  1. Ротор с лопастями (в зависимости от модели, ветрогенераторы делятся на двухлопастные, трёхлопастные и многолопастные).
  2. Редуктор, проще говоря, коробка передач. Его задача заключается в регулировании скорости между ротором и генератором.
  3. Защитный кожух - его название говорит само за себя, он предназначен для защиты всех составляющих деталей ветряной электростанции от внешнего воздействия.
  4. «Хвост» ветряной установки - нужен для поворота конструкции по направлению ветра.
  5. Аккумуляторная батарея – её основной целью является накопление электроэнергии. Связано с тем, что погодные условия не всегда благоприятны для ветряной электростанции, а с помощью этой составляющей сохраняется определённый запас энергии.
  6. Инверторная установка – предназначена для преобразования постоянного тока в переменный. Это нужно для обеспечения работы домашних электроприборов.


Типы и принцип работы

Ветряные электростанции делят на типы по следующим четырём критериям:

  1. По направлению оси вращения лопастей (делят на горизонтальные и вертикальные. Вертикальные более устойчивы к внешним условиям, но у них меньшая выработка электроэнергии) .
  2. По количеству лопастей (в этом случае ветрогенераторы бывают двух-, трёх- и многолопастные).
  3. По использованному материалу (выделяют с жёсткими и парусными лопастями. Основное отличие в том, что парусные стоят дешевле, но они менее прочны);
  4. По способу управления лопастями (существуют с фиксированным и изменяемым шагом лопастей. Специалисты рекомендуют фиксированный шаг лопастей, так как изменяемый вызывает затруднения в использовании).

При выборе электростанци,й целесообразно было бы знать, в чём заключается принцип работы ветрогенератора. Принцип действия установки предельно прост. Конструкция состоит из хвостовика с лопастями, закреплёнными на металлической мачте, которые вращаются при помощи ветра и крутят ротор генератора.

Перед подачей тока в аккумуляторный отсек, он проходит через преобразователь, где происходит преобразование переменного тока в постоянный до напряжения в 220 Вольт с частотой в 50 герц и снабжает дом электричеством в безветренную погоду.

Современному ветрогенератору нет необходимости в сильном ветре. Его конструкция столько продумана, что для частного дома достаточно скорости ветра до 4 – 5 м/c.

Преимущества и недостатки

Основные преимущества ветрогенераторов:

  1. Затраты уходят на установку и профилактику прибора. Больше расходов не требуется, так как конструкция не нуждается в топливе для работы.
  2. Вам не нужно контролировать и вмешиваться в работу ветряка , так как выработка энергии происходит всегда, когда есть ветер.
  3. В зависимости от типа генератора, он не будет производить лишний шум.
  4. Приспособлению подходит большинству климатических условий.
  5. Износ деталей незначителен.

Основные недостатки ветряной электростанции:

  1. В определенных режимах или при неправильной установке мачты , ветрогенератор может издавать инфразвук.
  2. Высокая мачта обязательно требует заземления.
  3. Необходимость регулярной профилактики.
  4. Вероятность повреждения приспособления при ураганах и т.д.

Выбор размера и места для размещения

Размер ветряной электростанции является очень важным вопросом для потенциальных покупателей. Для того, чтобы определиться с размерами, вам нужно внимательно изучить – сколько энергии вы потребляете в течение одного месяца? Полученную цифру необходимо умножить на 12 месяцев.

Затем, вам нужно воспользоваться формулой: AEO = 1.64 * D*D * V*V*V.

Обозначения, которые необходимо знать при использовании формулы:

  1. AEO - электроэнергия, которую вы используете за год.
  2. D – диаметр ротора, который обозначается в метрах.
  3. V – среднегодовая скорость ветра, обозначается в м/сек.

Таким образом, эти подсчёты помогут определить, какой размер генератора вам нужен, в зависимости от вашего расхода электроэнергии.

Задумываясь о приобретении ветряной электростанции для дома, нужно максимально точно изучить все детали связанные с конструкцией, так как от этого зависит то, насколько ваша цель будет удовлетворена.

При размещении ветрогенератора, вам стоит учитывать следующие факторы:

  1. Вблизи вашей установки не должно быть деревьев , разнообразных построек и прочего, что могло бы помешать максимальной продуктивности работы вашего генератора.
  2. Лучше всего установить ветрогенератор на специально сооружённую конструкцию , которая должна быть на пару метров выше, чем преграды расположенные на расстоянии как минимум 200 метров.
  3. Рекомендуется размещать ветроэлектростанции на расстоянии около 30-40 метров от жилых домов , так как они создают определённый шум, который приносит дискомфорт.

Также, вы должны учитывать, что вы не сможете постоянно получать одинаковый результат от вашей ветряной электростанции, так как природные условия меняются, в одном и том же месте могут быть разные порывы ветра, соответственно, и количество получаемой вами энергии будет динамично.

Обзор цен

В большинстве случаев, цена на ветряные электростанции зависит от их мощности. В бытовых условиях вполне достаточно генераторов с мощностью от 5 до 50 кВт.

Более детально о соотношении цен и видах генераторов:

  1. Ветрогенераторы с мощностью 3 кВт /48V – примерная стоимость 93 000,00р. Подобные могут быть использованы не только в качестве дополнительного источника электроснабжения, но и основного. Такие модели в состоянии обеспечить электроэнергией коттедж.
  2. Ветрогенераторы с мощностью 5 кВт /120V – приблизительно 220 100,00 р. Такая конструкция сможет обеспечить энергией целый дом. Вы сможете одновременно включать достаточно большое количество бытовых электрических приборов.
  3. Ветрогенераторы с мощностью 10 кВт/240V – цены в пределах 414 000,00 р. Его достаточно для обеспечения энергией фермерского хозяйства или нескольких домов. Помимо бытовых приборов вы без проблем сможете использовать, к примеру, электрические строительные инструменты весь день. Такие электрогенераторы часто используются для супермаркетов, чтобы обеспечить постоянную работу отделов и видеонаблюдения.
  4. Ветрогенераторы с мощностью 20 кВт/240V – цена такого устройства 743 700,00р. Электростанции такого типа являются очень мощными. Они в состоянии обеспечить электроэнергией целую водонапорную систему. В бытовых условиях он сможет более чем полностью обеспечить энергией огромный дом.
  5. Ветрогенераторы с мощностью 30 кВт/240V – стоимость в пределах 961 800,00 р. Эта модель является настолько мощной, что сможет обеспечить электрической энергией пятиэтажный дом.
  6. Ветрогенераторы с мощностью 50 кВт/380V – приблизительная цена около 3 107 000,00р. Эта модель не рациональна для использования в бытовых условиях, так как она настолько мощна, что сможет с лихвой обеспечить энергией несколько многоэтажных домов.

При покупке домашней электростанции, стоит знать о том, что в большинстве случаев цены указаны за полную комплектацию, но вы можете самостоятельно добавить или исключить определённые составляющие. Это подлежит вашему личному усмотрению.

Эффективность и окупаемость

Ветряные электростанции для дома являются альтернативным решением при экономии электроэнергии. Они получили достаточно широкое распространение.

Для того, чтобы обеспечить энергией целый дом, достаточно использовать один ветрогенератор и при этом не ограничивать себя, экономя на электроэнергии.

Выгодно и то, что для получения такого эффекта достаточно минимальной скорости ветра от 1,8 до 4,5 метра в секунду.

Но погодные условия не всегда подходят для ветрогенератора, поэтому вам нужно приобрести резервный генератор, который обеспечит запас энергии. Это даст возможность повысить продуктивность вашей домашней ветряной электростанции.

Среди положительных сторон установки стоит отметить следующие:

  1. Потратив большую сумму на электрогенератор , вам больше не потребуется тратить денежные средства, так как топливо для работы прибора не нужно. То есть уже за несколько лет ваше приобретение сможет окупиться.
  2. Производительность ветрогенератора не зависит от времени года или других погодных условий, его работа не прекращается даже зимой, что несомненно является плюсом, так как в зимнее время года расход энергии больше чем в другие. Этот факт несомненно свидетельствует о его эффективности и окупаемости.
  3. Износ деталей генератора незначительный , учитывая регулярную профилактику ветрогенератора, которая является необходимой. При правильной и грамотной установке, а также эксплуатации ветряной электростанции для дома, она сможет прослужить вам более тридцати лет, что несомненно является значительным плюсом.

Срок полной окупаемости ветряных электростанций составляет приблизительно 5-7 лет, а далее вы сможете использовать электроэнергии абсолютно бесплатно.

Понравилась статья? Поделиться с друзьями: