Частотные методы анализа синтеза сау. Методы синтеза сау. Изменение коэффициента передачи

Цель работы

Расчет частотным методом корректирующего устройства для линейной системы (рис.4.1) .

Рис.4.1. Структурная схема исходной системы

Основные сведения

Первым этапом частотного метода синтеза является построение логарифмической амплитудно-частотной характеристики (ЛАЧХ) разомкнутой системы. Затем по требованиям к качеству переходного процесса (t п иs% ) строят среднечастотный участок желаемой ЛАЧХ, который имеет наклон - 20 дб/дек и пересекает ось абсцисс в точке (lgw c >0 ), - где w c - частота среза,w c =(0.6 - 0.9)·w n, w n - частота положительности. Исходя из заданного перерегулирования s%, по номограммам (рис.4.2) определяют запас устойчивости по модулю DL , ограничивающий среднечастотный участок ЛАЧХ, иw п =Np/t п , где N - коэффициент пропорциональности, соответствующий найденному значению P max .

Например, при s=25% получаемP max =1.22, N=4 .

Рис.4.2. Номограммы для определения параметров желаемой ЛАЧХ

В области высоких и низких частот желаемую характеристику сопрягают с ЛАЧХ исходной системы. Вычитая из желаемой ЛАЧХ характеристику разомкнутой системы, получают ЛАЧХ корректирующего звена, по которому определяют его передаточную функцию. Структурная схема системы с учетом корректирующего звена показана на рис.4.3.

Методические указания

Для выполнения лабораторной работы необходимо рассчитать параметры корректирующего звена в соответствии с требованиями к качеству процессов в замкнутой системе. Работа выполняется с помощью одного из пакетов прикладных программ для исследования САУ(COMPAS, SIMNON, MATLAB ) .

Рис.4.3. Структурная схема скорректированной системы

Порядок выполнения работы

4.1. Набрать модель исследуемой системы (рис.4.1.), параметры которой приведены в таблице. Зарисовать графики процессов y(t) , D(t) .

4.2. По требованиям к качеству переходных процессов в системе рассчитать параметры корректирующего звена.

Таблица 4.1

Параметр Номер варианта
W 1 (p)
W 2 (p)
K o
K 1 2.0 2.0 2.0 2.0 1.4 2.0 1.5 2.0 2.0
T 1 (0) 0.03 0.025 0.04 0.1 0.13 0.05 5.0 0.25 0.017
K 2 2.5 1.0 0.9 1.5 2.0 2.1 3.3 1.25 2.0
T 2 (0) - - - 0.15 0.025 0.013 0.05 0.017 0.25
D 0.3 0.5 0.4 - - - 0.4 0.5 0.7
t п (0) 1.7 0.8 2.0 2.0 1.6 1.2 2.0 0.4 2.0
s%

4.3. Набрать модель корректирующего звена и включить его в систему. Снять переходный процесс в скорректированной системе и убедиться, что показатели качества соответствуют заданным.



4.4. Изменить параметры корректирующего звена, зафиксировать переходный процесс, определить показатели качества процесса, сравнить их с результатами п.4.3.

5.1. Цель работы.

5.2. Структурные схемы системы без коррекции и с коррекцией.

5.3. ЛАЧХ исходной системы, желаемая ЛАЧХ разомкнутой системы и корректирующего звена.

5.4. Передаточная функция корректирующего звена.

5.5. Переходные процессы по п.4.1, 4.3, 4.4.

6.Контрольные вопросы

6.1. Какая часть ЛАЧХ определяет свойства системы в статическом режиме?

6.2. Какая часть ЛАЧХ определяет свойства системы в динамике?

6.3. Как по передаточной функции системы построить ее асимптотическую ЛАЧХ?

6.4. Как учитываются внешние возмущения при синтезе регулятора?

6.5. Как связаны показатели качества замкнутой системы с видом желаемой ЛАЧХ?

6.6. Как по ЛАЧХ корректирующего звена восстановить его передаточную функцию?

Лабораторная работа № 5

Исследование свойств наблюдателей состояния

Цель работы

Исследовать методы построения и свойства наблюдателей состояния для динамических объектов.

Основные сведения

Рассматриваются линейные стационарные объекты поведение, которых описывается передаточной функцией

W(p) = = (5.1)

U T2p2+2dTp+1

Существует ряд методов синтеза систем управления (методы аналитического конструирования оптимальных регуляторов, модальный метод синтеза), применение которых предполагает использование переменных состояния системы в законе управления. Однако на практике обычно доступна для измерения только выходная переменная системы y(t), поэтому возникает задача получения оценки вектора состояния x(t).

Для оценки переменных состояния используется специальная техническая система - фильтр оценки состояния (наблюдатель состояния). В лабораторной работе рассматриваются такие способы построения наблюдателей состояния, как способ параллельной модели и фильтр Калмана. Способ параллельной модели может быть использован для устойчивых линейных стационарных объектов (5.1). При этом уравнение наблюдателя состояния имеет вид

T 2 ÿ+2dTý+y=KU (5.2)

Соответствующая структурная схема объекта (5.1) с наблюдателем состояния приведена на рис. 5.1.

В случае, когда объект управления (5.1) неустойчив или требуется ускорить процесс оценки переменных состояния, обычно используется фильтр Калмана, который кроме параллельной модели содержит стабилизирующую добавку L(p). Структурная схема системы приведена на рис. 5.2.

Передаточная функция, связывающая между собой переменные Δ и U , имеет вид:

W (p) = = - . (5.3)

U T 2 p 2 +2dTp+1+KL(p)

Характеристическое уравнение наблюдателя следующее

T 2 p 2 +2dTp+1+KL(p)=0. (5.4)

Выбор коэффициентов стабилизирующей добавки L(p) осуществляется исходя из требований к качеству переходных процессов в наблюдателе. При этом формируется желаемое характеристическое уравнение, коэффициенты которого приравниваются коэффициентам уравнения (5.4).

Рис.5.1. Структурная схема объекта с наблюдателем

в виде параллельной модели

Рис.5.2. Структурная схема объекта с наблюдателем

в виде фильтра Калмана

Методические указания

3.1. Выполнить расчет стабилизирующей добавки L(p)=K З , исходя изпроцесса в наблюдателе.

τ 2 p+1

переходных процессов в наблюдателе, где t п - желаемое время переходного процесса; σ% - величина допустимого перерегулирования.

3.3. Пункты, отмеченные символом *, выполняются по рекомендации преподавателя.

Порядок выполнения работы

4.1. Собрать схему моделирования системы (5.1) с наблюдателем состояния по способу параллельной модели (рис.5.1) в соответствии с номером варианта.

Таблица 5.1

Параметр Номер варианта
К 8.0 6.0 5.0 12.0 3.0 4.0 20.0 8.0
Т,(с) 4.0 2.0 4.0 5.0 2.0 1.0 5.0 2.0
d 0.5 0.3 0.5 0.4 0.3 0.2 0.6 0.25
t п,(c) 1.0 0.6 1.5 2.0 0.5 0.3 1.5 0.5
s%

4.2. Зарисовать графики переходных процессов для переменных состояния объекта и наблюдателя, а также ошибку Δ(t),

4.3. Провести моделирование аналогично п.4.2, подавая на вход исследуемой системы единичное ступенчатое воздействие при различных начальных условиях для объекта и наблюдателя.

4.4. Изменить величину T в объекте в 2 раза и повторить п.4.3.

4.5. Оценить влияние K на свойства системы, последовательно увеличивая и уменьшая его значение для объекте в 2 раза относительно номинального и повторяя п. 4.3.

4.6. Собрать модель системы с фильтром Калмана (рис.5.2) и стабилизирующей добавкой L(p)=к З Δ(t), подавая на вход исследуемой системы единичное ступенчатое воздействие при нулевых начальных условиях.

4.7. Провести моделирование аналогично п.4.6, подавая на вход исследуемой системы единичное ступенчатое воздействие при различных начальных условиях для объекта и наблюдателя.

4.8. Исследовать влияние K , последовательно увеличивая и уменьшая его значение в два раза относительно расчетного и повторить п. 4.6 и 4.7.

4.9*. Изменить величину T в объекте в 2 раза и повторить п.4.7.

4.10*. Оценить влияние K на свойства системы, последовательно увеличивая и уменьшая его значение для объекта в 2 раза относительно номинального и повторяя п. 4.7.

4.11. Собрать модель системы с фильтром Калмана и стабилизирующей добавкой L(p)=K(τ 1 p+1)/(τ 2 p+1) и зарисовать графики переходных процессов для выходных переменных объекта и наблюдателя, а также ошибку Δ(t), подавая на вход исследуемой системы единичное ступенчатое воздействие при нулевых начальных условиях.

4.12. Провести моделирование аналогично п.4.11, подавая на вход исследуемой системы единичное ступенчатое воздействие при различных начальных условиях для объекта и наблюдателя.

4.13. Изменить величину T в объекте в 2 раза и повторить п. 4.12, сравнить с результатами пп. 4.4 и 4.9.

4.14. Оценить влияние K на свойства системы, последовательно увеличивая и уменьшая его значение для объекта в 2 раза относительно номинального и повторяя п.4.12. cравнить с результатами, полученными в пп.4.5 и 4.10.

5.1. Цель работы.

5.2. Структурные схемы исследованных систем.

5.3. Расчет параметров стабилизирующей добавки L(p).

5.4. Графики результатов моделирования.

5.5. Выводы по работе.

6. Контрольные вопросы

6.1. Какова область применения способа параллельной модели?

6.2. Как влияет изменение параметров объекта на ошибку оценки переменных состояния способом параллельной модели?

6.3. Как выбирают параметры стабилизирующей добавки L(p) ?

6.4. Какова область применения фильтров Калмана?

6.5. Как влияет изменение параметров объекта на ошибку оценки переменных состояния с помощью фильтра Калмана?

6.6. Можно ли изменить скорость оценки переменных состояния с помощью наблюдателя в виде параллельной модели?

6.7. Как осуществляется оценка переменных состояния, если объект и наблюдатель имеют различные начальные условия?

Лабораторная работа № 6

Метод логарифмических частотных характеристик используется для определения частотных передаточных функций корректирующих устройств, приближающих динамические показатели к желаемым. Наиболее эффективно этот метод применяется для синтеза систем с линейными или цифровыми корректирующими устройствами, поскольку в таких системах частотные характеристики звеньев не зависят от амплитуды входных сигналов. Синтез САУ методом логарифмических частотных характеристик включает в себя следующие операции:

На первом этапе по известной передаточной функции неизменяемой части САУ строится ее логарифмическая частотная характеристика . В большинстве случаев достаточно использование асимптотических частотных характеристик.

На втором этапе строится желаемая логарифмическая частотная характеристика САУ , которая удовлетворяла бы поставленным требованиям. Определение вида желаемой ЛАЧХ проводится, исходя из назначения системы, времени переходного процесса, перерегулирования и коэффициентов ошибок. При этом часто используются типовые частотные характеристики для систем с разным порядком астатизма. При построении желаемой ЛАЧХ необходимо быть уверенным, что вид амплитудной характеристики полностью определяет характер переходных процессов, и нет необходимости вводить в рассмотрение фазовую частотную характеристику. Последнее справедливо в случае минимально-фазовых систем, для которых характерно отсутствие нулей и полюсов, расположенных в правой полуплоскости. При выборе желаемых логарифмических амплитудной и фазовой характеристик важно, чтобы последняя обеспечила требуемый запас устойчивости при частоте среза системы. Для этого используют специальные номограммы, вид которых приводится на рис. 1.

Рисунок 16‑1 Кривые для выбора запаса устойчивости по амплитуде (а)и фазе (б) в зависимости от величины перерегулирования

Удовлетворительные качественные показатели САУ в динамических режимах достигаются при пересечении амплитудной характеристики оси абсцисс с наклоном –20 дб/дек.

Рисунок 16‑2 Определение характеристик ПКУ

На последнем этапе из сравнения частотных характеристик некорректированной системы и желаемых частотных характеристик определяются частотные свойства корректирующего устройства. При использовании линейных средств коррекции логарифмическая частотная характеристика последовательного корректирующего устройства (ПКУ) может быть найдена вычитанием ЛАЧХ некорректированной системы из желаемой ЛАЧХ САУ, то есть

Следовательно

Следует отметить, что по передаточной функции последовательного корректирующего устройства легко определить передаточные функции звеньев в цепи прямой или обратной связи, с помощью которых осуществляется коррекция динамических показателей САУ.



Следующим этапом является определение способа реализации, схемы и параметров корректирующего устройства.

Последним этапом синтеза устройства коррекции является проверочный расчет САУ, который заключается в построении графиков переходных процессов для системы с выбранным корректирующим устройством. На этом этапе целесообразно использование средств вычислительной техники и моделирующих программных комплексов VinSim, WorkBench, CircuitMaker, MathCAD.

Синтез корректирующих устройств методом ЛАЧХ основан на знании желаемой ЛАЧХ проектируемой САУ в разомкнутом состоянии. ЛФЧХ при этом не рассматривается, так как система предполагается минимально-фазовой и при известной ЛАЧХ фазовая характеристика является заданной.

Желаемой ЛАЧХ называется такая ЛАЧХ, которой соответствует система с требуемыми показателями качества (время регулирования t р, перерегулирование s%, установившаяся ошибка е уст). Задачей синтеза корректирующего устройства является выбор его структуры и параметров так, чтобы максимально приблизить ЛАЧХ скорректированной системы к желаемой.

В качестве желаемых часто выбирают так называемые оптимальные характеристики, являющиеся наилучшими в каком-либо смысле. Системы с такими характеристиками называют оптимальными.

Передаточная функция и частотная характеристика оптимальной системы.

При построении желаемых ЛАЧХ разомкнутой системы используется понятие оптимальной системы. Для каждой САУ можно выбрать свои условия оптимальности. Здесь назовем процесс регулирования при ступенчатом задающем воздействии оптимальным, если он является монотонным и время регулирования t р является минимальным при ограниченной второй производной входной величины x(t).

Обозначим .

Время переходного процесса оптимальной системы обозначим через t min .

Процесс регулирования будет оптимальным, если ускорение g имеет максимальное значение g m и меняет знак при , т.е.

Тогда при (127)

при (128)

x 0 (t) – управляемая величина в оптимальном процессе.

При и тогда для можно записать в виде

Объединяя (1)-(3) с помощью единичных ступенчатых функций, получим

Из зависимости (130) можно получить

В зависимости от величины входного воздействия будем изменять

Пусть .

это минимальное время отработки ступенчатого сигнала g 0 с ускорением управляемой величины, не превосходящем g m .

Найдем передаточную функцию замкнутой оптимальной системы

Учитывая (130), (131), получим

Определим передаточную функцию разомкнутой системы. Имеем

и тогда из (132) и (133) найдем

Полученная передаточная функция является трансцендентной функцией p. Это означает, что принятая форма оптимального процесса регулирования, определяемая выражением (130) не может быть точно реализована линейной стационарной САУ. Однако она определяет тот предел, к которому следует приближать процессы в линейной системе с постоянными параметрами.

Зависимость (134) позволяет определить ЛАЧХ оптимальной САУ.

Под синтезом понимают построение, создание, проектирование, настройку оптимальной системы по отношению к ее параметрам. Поэтому синтезом занимаются проектировщики, создатели САР. При эксплуатации уже созданных систем, например, серийно выпускаемых, речь может идти только о подстройке параметров при выходе системы из требуемых режимов по тем или иным причинам.

Методы синтеза

1. При создании САУ необходимого назначения прежде всего заботятся о том, чтобы она выполняла свои функции управления и регулирования с заданной точностью, имела оптимальный по технико-экономическим показателям состав элементной базы (усилители, регуляторы, преобразователи, двигатели, датчики и т.д.), чтобы она обеспечивала необходимую мощность, скорость, моменты движения, была простой, надежной, удобной в эксплуатации и экономичной.

На этом этапе вопросы динамики удается учитывать лишь в грубом приближении, например - не выбирать элементы заведомо неустойчивые, с большими постоянными времени, резонансные и т.д.

2. Вопросы обеспечения статических характеристик, точности отработки задаваемых команд и высоких технико-экономических показателей являются для технологических процессов и экономики центральными и для решения наиболее трудными. Поэтому, несмотря на то, что без хорошего качества динамических режимов САУ не будет принята в эксплуатацию, синтез ее структуры для обеспечения требуемых режимов проводится на втором этапе, когда функциональная схема, состав элементов и параметры системы предварительно установлены. Совместить сколько-нибудь эффективно оба этапа не удается.

В целом спроектированная на первом этапе САУ обычно представляет собой многоконтурную структуру со сложной передаточной функцией, анализ которой дает неудовлетворительные результаты по качеству переходных процессов. Поэтому ее необходимо упростить до желаемых характеристик и скорректировать.

Синтез САУ требуемого качества

Синтез системы должен проводиться путем изменения структуры для удовлетворения необходимым требованиям. Характеристики системы, которые соответствуют требованиям, называют желаемыми характеристиками в отличие от располагаемых, которые имеет исходная неоптимальная система.

Основой построения желаемых характеристик служат требуемые показатели системы: устойчивость, быстродействие, точность и др. Так как наибольшее распространение получили логарифмические частотные характеристики, то рассмотрим синтез САУ по желаемым ЛАЧХ и ЛФЧХ.

1. Построение желаемых характеристик начинают со среднечастотного участка, характеризующего устойчивость, быстродействие и форму переходного процесса системы. Положение его определяется частотой среза с.ж. (рис.1.8.1).

Частота среза определяется по требуемому времени переходного процесса tпп и допустимому перерегулированию:


Рис.2.

  • 2. Через точку c проводят среднечастотную асимптоту желаемых характеристики с наклоном 20 дБ/дек (рис.1.8.1.).
  • 3. Находим низкочастотную составляющую с 2.

Обычно задаются добротностью системы по скорости Dск и по ускорению Dуск.

Находим частоту

Пересечение этой асимптоты со среднечастотной ограничивает ее слева на сопрягающей частоте.

4. Сопрягающую частоту 3 выбирают так, чтобы 3/ 2=0,75 или lg 3-lg 2=0,7дек, обеспечивающий условия устойчивости.

В этом условии учтены соотношения:

которые также можно использовать для ограничения среднечастотной асимптоты.

Если нет ограничений в явном виде, то выбирают 2 и 3 из условий (рис.1.8.1,б)

L2=(616)дбLc(c) =-(616)дб(1.8.4)

Увеличение участка 3 - 2 нецелесообразно.

5. Находим низкочастотную составляющую с 1. По добротности скорости определяем коэффициент усиления

Dск=Kск.(1.8.5)

Откладываем на оси частот Kск, проводим асимптоту с наклоном 20 дБ/дек через эту точку и заканчиваем на пересечении со второй асимптотой. Точка пересечения и является низкочастотной составляющей c 1.

6. Проверяем на запас устойчивости по фазе

фаза на частоте среза c не должна превышать - с гарантией 45.

7. Проверяем выполнение условий непопадания желательной ЛАЧХ в запретную зону (рис.1.8.1,а).

и LK=20lgKск,(1.8.7)

где Kск= - коэффициент усиления разомкнутой системы или добротность по скорости.

Синтез линейных САУ

Основные понятия о синтезе систем управления

Все математические задачи, решаемые в теории автоматического управления, можно объединить в два больших класса – задачи анализа и задачи синтеза автоматических систем.

В задачах анализа полностью известна структура системы, заданы все (как правило) параметры системы, и требуется оценить какое-либо ее статистическое или динамическое свойство. К задачам анализа относятся расчет точности в установившихся режимах, определение устойчивости, оценка качества системы.

Задачи синтеза можно рассматривать как обратные задачам анализа: в них требуется определить структуру и параметры системы по заданным показателям качества. Простейшими задачами синтеза являются, например, задачи определения передаточного коэффициента разомкнутого контура по заданной ошибке или условию минимума интегральной оценки.

Под синтезом линейных САУ понимается выбор такой структурной схемы, ее параметров, характеристик, которые отвечают с одной стороны заданным показателям качества и простоты технической реализации и надежности с другой стороны.

Особенности синтеза

    САУ включает в себя объект управления и корректирующие устройства (это такие устройства, структура и параметры которых изменяются в соответствие с задачей синтеза).

    Задание показателей качества определяется как верхняя граница допустимых показателей качества, т.о. заданные показатели качества определяют собой область принятия решений. Поэтому при синтезе выбирают критерий оптимизации, позволяющий определить однозначный выбор структуры и параметров САР.

    Для современных САУ процедура синтеза определяет ориентировочную характеристику САУ, поэтому окончательный результат получается в результате анализа (настройки, моделирования) синтезированной САУ.

Этапы синтеза САУ

    Анализируется объект управления, определяются статические и динамические характеристики объекта.

    Определяется критерий оптимизации, основанный на заданных показателях качества САУ.

    Строится структурная схема САУ, выбираются технические средства ее реализации.

    Синтез оптимальной динамической характеристики.

    Аппроксимация оптимального динамического режима, т.е. выбор динамических характеристик (желаемых), отвечающих заданным показателям качества и простоте технической реализации корректирующих устройств.

    Определение динамических характеристик корректирующих устройств, которые обеспечивают желаемые динамические характеристики всей системы.

    Выбор схемы и способа технической реализации корректирующих устройств по заданной динамической характеристике корректирующего устройства.

    Анализ синтезированных САУ.

Синтез систем методом ЛАЧХ

Существует два способа включения корректирующих устройств:

    Последовательно к объекту управления.

Здесь W 0 (p ) – передаточная функция объекта, а W кор (р) – передаточная функция корректирующего устройства.

Достоинством последовательной схемы вклю­чения является простота технической реализации.

Недостатки: высокая чувствительность данной схемы к помехам; сильная зависимость от изменений параметров объекта.

    Параллельно к некоторой части объекта.

Д

остоинства: уменьшение зависимости, в отличие от схемы (1), от изменения параметра объекта, хорошая помехозащищенность.

Недостатки: корректирующее устройство данной схемы реализуется дорогостоящими схемами, в отличие от схемы (1).

В качестве динамических характеристик, по которым осуществляется синтез САУ, выбирается ЛАЧХ разомкнутой системы объекта, т.к. по ней достаточно легко определить параметры объекта.

Желаемая ЛАЧХ

При построении желаемой ЛАЧХ выделяют три диапазона частот:

    Низких частот ( с ). Данный диапазон частот отражает статические характеристики.

    Диапазон средних частот ( с ). Определяет динамические характеристики объекта при ступенчатом входном воздействии.

    Диапазон высоких частот ( с ). Данный диапазон частот не влияет на статику, а определяет динамические характеристики объекта при быстроизменяющемся входном воздействии.

Модальный регулятор.

Является методом корневого синтеза, а именно, по желаемому расположению корней характеристического уравнения на комплексной плоскости строится модальный регулятор, который представляет собой коэффициенты отрицательной обратной связи по каждой динамической переменной.

Дано описание объекта:

Задаёмся видом желаемого полинома D жел (p) – в соответствии с заданными (желаемыми) показателями качества.

Введём обратную связь, вида:

где
- характеристическое уравнение системы с регулятором.

Пример: Дана система уравнений

n 1 U x 1 x 2 x 3


Нужно рассмотреть матрицу управляемости:


Система управляема, так как ранг равен порядку системы

Выбираем желаемый полином той же степени, что и система:

D жел (p)=(p+w 0 ) 3 =p 3 +3p 2 w 0 +3pw 0+ w 0 3

- оценка качества, где - время переходного процесса

При выбранном значении
получаем:

K oc1 = 2; K oc2 = -1; K oc3 =5;

Управляемость и наблюдаемость.

Система называется управляемой, если, изменяя любой из входных сигналов можно добиться желаемого значения на выходе системы за конечное время.

без нее система будет неуправляемой, а с ней -

управляемой.

Критерий управляемости.

Для того, чтобы система была управляемая необходимо и достаточно, чтобы ранг матрицы управляемости был равен n (порядок объекта).

В общем случае матрица управляемости является прямоугольной. Если система имеет один вход, то матрица имеет размерность
.

Наблюдаемость.

Система называется наблюдаемой, если по выходным сигналам Y можно восстановить переменные состояния X.

Наблюдаемость, в отличие от измеряемости предполагает не только измерение переменных состояний X, а также вычисления не измеряемых переменных X по измеренным.

Измеряемость – это случай, когда непосредственно можно замерить любую переменную.

Критерий наблюдаемости.

Для того, чтобы система была наблюдаема необходимо и достаточно, чтобы ранг матрицы наблюдаемости был равен n (порядок объекта).

Понравилась статья? Поделиться с друзьями: