Как рассчитать закрытый ящик для динамика. Делаем короб для сабвуфера своими руками: пошаговая инструкция. Сабвуфер с перевернутыми динамиками

Акустическое оформление в виде закрытого ящика можно рассматривать как предельный случай ящика-фазоинвертора с бесконечно малым отверстием. Эквивалентная акустическая схема низкочастотной головки в закрытом ящике может быть получена, если в схеме рис. 3 отбросить элементы, относящиеся к инвертору. Соответствующая частотная характеристика громкоговорителя совпадает с уравнением (17) при y3 = y4 = 0.

Среди множества типов частотных характеристик, которые могут быть получены для громкоговорителя в виде закрытого ящика. Наибольший интерес представляют гладкие частотные характеристики Баттерворта второго порядка. Эти характеристики образуются при условии выполнения соотношений между параметрами головки и ящика, выраженных уравнением (27) при f b /f s = 0. Особенностью громкоговорителей с частотными характеристиками Баттерворта второго порядка является то обстоятельство, что частота среза f 3 (29) совпадает с резонансной частотой головки в ящике f c .

Графическое представление уравнений (27) и (29) образует номограмму для расчета громкоговорителей с акустическим оформлением в виде закрытого ящика. На рис. 17 в прямоугольной системе координат изображены зависимости отношений V as /V , f 3 /f s , f c /f s в функции от Qt. Методика расчета акустического оформления громкоговорителя с известной частотой среза или с ящиком известных размеров полностью подобна методике для громкоговорителей в виде ящика-фазоинвертора. Номограмма построена для громкоговорителя без потерь в акустическом оформлении (Qb = бесконечность), однако практически с удовлетворительной точностью ею можно пользоваться при условии Q b >10.

Частичное заполнение (до 20% объема) закрытого ящика поглощающим материалом с целью подавления стоячих волн и улучшения неравномрсности частотной характеристики на средних частотах мало влияет на Qb. Помимо сглаживания частотной характеристики, подглушение оказывается полезным еще и в том отношении, что за счет изменения закона сжатия и разрежения воздуха при колебаниях в звукопоглощающем материале происходит увеличение эффективного объема ящика (уменьшение измеряемого отношения Vas/V). Это дает возможность по сравнению с незаполненным ящиком получать частотную характеристику с более низкой частотой среза или одну и ту же частоту среза в меньшем по размерам оформлении. Чрезмерно плотное заполнение ящика поглощающим материалом приводит к обратному результату — уменьшению эффективного внутреннего объема за счет механического вытеснения воздуха и одновременно к росту потерь в ящике. Современные тенденции в построении громкоговорителей с закрытыми ящиками заключаются в использовании головок с низкой резонансной частотой и большой гибкостью подвижной системы. Для таких громкоговорителей отношение Vas/V больше или равно 3, а частота среза в 2 раза и более превышает собственную резонансную частоту головки в свободном воздухе.

Закрытый ящик и ящик-фазоинвертор являются в настоящее время самыми распространенными типами акустических оформлений громкоговорителей. Сравнительный анализ показывает, что каждый из них имеет свои преимущества и недостатки.

К преимуществам громкоговорителя с закрытым ящиком относят плавный спад частотной характеристики в сторону низких частот (12 дБ на октаву для закрытого ящика и 18 дБ на октаву для ящика-фазоинвертора). Более плавный спад частотной характеристики обеспечивает меньшие переходные искажения.

К преимуществам громкоговорителя, выполненного в виде ящика-фазоинвертора, можно отнести следующие.

При прочих равных условиях в области самых низких частот к. п. д. громкоговорителя оказывается на 3 дБ выше, чем для закрытого оформления. Этот выигрыш в эффективности может быть переведен в преимущество в частоте среза или объеме оформления. Так, при одинаковых к. п. д. и объемах оформлений громкоговоритель в виде ящика-фазоинвертора будет иметь более низкую частоту среза, а при равных к. п. д. и частотах среза — меньший объем оформления.

Из-за лучшего согласования головки громкоговорителя со средой амплитуда подвижной системы в области частоты резонанса громкоговорителя оказывается во много раз меньшей, чем у закрытого ящика. Это означает, что при равной излучаемой мощности громкоговоритель в виде ящика-фазоинвертора имеет меньшие нелинейные искажения.

Короб под сабвуфер

Как вы оформите сабвуфер, так он и зазвучит. Конечно, есть готовые варианты – корпусные низкочастотники, однако требовать от них реальной производительности и вибраций не стоит. Это «середина», рассчитанная на среднестатистического потребителя, далеко не аудиофильский и творческий формат.

Самыми популярными типами акустического оформления низкочастотников являются закрытые ящики и фазоинверторы. Написано о них много, подробно рассказывается о преимуществах и недостатках, есть отзывы, примеры и многое другое.

Короб под сабвуфер требует точнейшего расчета, есть даже специальная программа для расчета объема короба сабвуфера. Если вы сталкиваетесь с этим вопросом впервые, лучше обратиться к профессионалам. Иначе получится плачевный результат: деньги на ветер и отсутствие звука, к которому стремимся.

Какой объем короба нужен для закрытого ящика?

  • Сабвуфер 8 дюймов – короб 8-12 литров в чистом виде
  • Сабвуфер 10 дюймов – короб 13-23 литров
  • Сабвуфер 12 дюймов – короб 24-37 литров
  • Сабвуфер 15 дюймов – короб 38-57 литров

Точный объем не обозначить, так как каждый НЧ динамик имеет свои характеристики и требования к установке, здесь немаловажна и настройка. Если объема короба будет больше, чем нужно, то низкие частоты получатся расплывчатыми, не четкими. Если меньше – бас станет «быстрым» и резким, это слишком для человеческого слуха.

Какой объем короба нужен для фазоинвертора?

  • Сабвуфер 8 дюймов – 20-33 литра в чистом виде
  • Сабвуфер 10 дюймов – 34-46 литров
  • Сабвуфер 12 дюймов – 47-78 литров
  • Сабвуфер 15 дюймов – 79-120 литров

В отличие от закрытого ящика фазоинверторный корпус может работать даже при меньших значениях, хотя и здесь важно не переборщить. Со слишком увеличенным или уменьшенным объемом вы не получите звука, в самом негативном варианте результатом станет потеря мощности и выход НЧ динамика из строя.

Сабвуфер с перевернутыми динамиками

Обычно устанавливается на демо-кары для соревнований SPL, где особенно ценится максимальное звуковое давление. Плюс – экономия объема корпуса, возможность установки нескольких сабвуферов на один короб. Диффузор динамиков «прокачивает» объем в обе стороны. Так SPL-щики и добиваются того самого «ветра», когда в салоне вибрирует все вокруг, включая обивку, "long hair", людей. Такие короба делают настоящие профессионалы, опираясь на опыт и знания в теме автозвука.

Требования к материалам

В качестве материалов для короба сабвуфера используют многослойную фанеру, древесину или ДСП. Также потребуется шумоизоляция, герметик, саморезы, клей и инструменты. В технических документах к каждому НЧ динамику идет инструкция с указанием необходимых объемов корпуса для хорошего звучания. Чертежи разрабатываются в соответствии с рекомендуемыми производителями объемами короба.

Если вы желаете купить короб для сабвуфера, то проконсультироваться можно прямо в магазине, специалисты MVA знают об этом много, посоветуют нужный объем и тип для имеющегося низкочастотного динамика.

Р асчет корпуса сабвуфера – ЗЯ (З акрытый Я щик). Рассчитать и сделать ЗЯ под конкретный сабвуферный динамик, не составляет большого труда, это очень простое, в расчете и изготовлении акустическое оформление. Задача заключается в том, чтобы определить необходимый объем закрытого ящика, в котором сабвуферный динамик, создаст относительно ровную АЧХ в салоне автомобиля.

Для расчета ЗЯ корпуса, понадобиться программа для расчета сабвуферных корпусов - JBL SpeakerShop или другая подобная. Находим даташит с техническими характеристиками сабвуферного динамика, нас интересуют параметры Тиля-Смолла, минимум, что нужно узнать о динамике: Fs (резонансная частота динамика), Vas (эквивалентный объем) и Qts (полная добротность). Если известнто больше параметров для динамика – хорошо, их можно все ввести, но для расчета корпуса ЗЯ и даже ФИ, вполне достаточно трех выше приведенных параметров.

Расчет сабвуферного корпуса - ЗЯ.

  • Открываем программу JBL SpeakerShop
  • Переводим программу в метрическую систему иcчислений
  • Открываем вкладку минимальных параметров
  • Вносим параметры динамика: Fs,Vas и Qts
  • Расчет З акрытого Я щика производится в блоке - Closed-box пункт Custom

В блоке - Closed-box в пункте Optimum программа автоматически предлагает оптимальный по ее мнению объем корпуса, и это на самом деле так и есть. Custom-ный расчет стоит делать если есть необходимость подкорректировать звучание сабвуфера.

  • Открываем вкладку Custom и изменяем объем Vc?





Кнопка Plot , показывает кривую АЧХ. Изменяя объем, необходимо получить как можно более плавную кривую, без провалов в рабочей зоне. Если что то не так, проверьте, подходит ли данный сабвуфер для ЗЯ .

После того как будет получена оптимальная кривая АЧХ, станет известно, какого объема необходимо делать корпус сабвуфера.

Считается это следующим способом:

Рассчитанный объем 1000 ÷ длину ÷ высоту = ширина. Более подробно, с примером, описано в конце статьи по расчету фазоинверторного короба .

Рекомендую делать корпус со скосом задней или передней стенки, это уменьшит воздействие отраженных волн от задней стенки. Что бы правильно рассчитать такой корпус нужно дно корпуса сделать длиннее на несколько см. а верх наоборот на несколько см. короче, от исходной, рассчитанной ширины, в конечном счете объем корпуса не изменится. Или применить в корпусе демпфирующий материал, но в этом случае, необходимо это учесть при расчете объема в программе.

На камне выбито: одна из фундаментальных зависимостей электроакустики запрещает одновременно увеличивать чувствительность и уменьшать нижнюю граничную частоту громкоговорителя и объём оформления. А если не выбито, так надо выбить…

ПРАВИЛА ИГРЫ

Это - к скульпторам. Мне же давно хотелось прояснить, как именно эта зависимость реализуется. Результатам этих прояснений и посвящены эти заметки. Для начала пара предварительных замечаний. Под чувствительностью громкоговорителя повсюду в пределах данного материала (если не сказано иного) будет подразумеваться так называемая опорная чувствительность (reference sensitivity), то есть чувствительность на тех частотах, где амплитудно-частотная характеристика системы имеет более или менее прямолинейный горизонтальный характер, или, как говорят акустики, нормированная частотная характеристика имеет единичное (более или менее) значение. Реальная чувствительность системы в некоторой полосе может быть как выше опорной (если в данной полосе наблюдается акустическое усиление), так и ниже неё (если имеет место спад АЧХ). В большинстве формул, однако, вместо чувствительности фигурирует значение КПД (опорного КПД) громкоговорителя η (это по-гречески, по-нашему - «эта»), которое связано с чувствительностью SPL простой зависимостью:

(1a) η = 6,026 10 -12 10 SPL/10 ,

(1b) или SPL = 10lg(η/6,026 10 -12)

Один из вариантов записи формулы для вычисления КПД электродинамического преобразователя выглядит так:

(2a) η = 4π 2 Fs 3 Vas/(c 3 Qes)

Здесь, как всегда,
Fs - частота собственного резонанса головки (Гц),

Vas - эквивалентный объём воздуха (м 3),

Qes - электрическая добротность головки,

c - скорость звука в воздухе (334 м/с).

Первый и самый простой вывод, который следует из рассмотрения формулы (2), заключается в том, что один из параметров Тиля - Смолла связан с двумя другими через КПД преобразователя, в частности, для эквивалентного объёма можем записать:

(2b) Vas=c 3 Qes η/(4π 2 Fs 3)

Итак, для головки с фиксированным значением Qes мы можем получить зависимость эквивалентного объёма Vas от аргументов (или SPL) и частоты Fs. Чтобы перейти от Vas к объёму ящика Vb (на данном этапе рассматриваем только закрытый ящик - ЗЯ), потребуется значение целевой добротности головки в ящике Qtc и полной добротности головки на воздухе Qts. Параметр Qtc - это основная характеристика «настройки» ЗЯ. (Мы привыкли к тому, что настраивается только фазоинвертор (ФИ), но сочетание параметров Qtc и нижней частотной границы ЗЯ тоже можно и даже принято называть настройкой.) В частности, для настройки Баттерворта Qtc = 0,707, для Бесселя 0,577. Настройки Чебышева тоже существуют, в зависимости от величины допустимого выброса на АЧХ (0,5 или 1 дБ) добротность Qtc может быть 0,86 или 0,95. Можно показать, что объём ящика Vb связан с эквивалентным объёмом Vas зависимостью:

(3) Vb = Vas Qts 2 /(Qtc 2 — Qts 2).

Теперь нам надо связать частоту резонанса головки в ящике Fc с частотой собственного резонанса (на воздухе) Fs. Для этого тоже существует соответствующая формула:

(4) Fc = Fs Qtc/Qes.

Наконец, значение частоты, соответствующей нижней частотной границе громкоговорителя по уровню -3 дБ (обозначается как F3), с частотой Fc связано жёстко, через константу k, которая известна для каждой настройки:

(k может быть как больше, так и меньше единицы, в частности, для Баттерворта k = 1,0.)

Добротность Qts связана с Qes через добротность Qm механических потерь в подвесе и в ящике известным соотношением:

(6) Qts = Qes Qm/(Qes + Qm).

Предположим сначала, что механические потери отсутствуют, Qm >> Qes, и тогда Qts = Qes. (Такое предположение можно считать обоснованным для головок с Qes не больше 0,3, имеющих добротность механических потерь не меньше 3,0.) Позже посмотрим, как меняется объём ящика, когда добротность потерь становится сравнимой с электрической добротностью. Как и всегда, в качестве отправной точки берём ЗЯ с баттервортовской добротностью. На первом рисунке приведены графики полученной зависимости для Qes, равной 0,2, 0,4 и 0,6.

Рис. 1. ЗЯ с полной добротностью Qtc = 0,707:



Для нас с вами практической пользы от таких графиков не очень много - какой смысл говорить о ящиках объёмом 1 - 5 кубометров, когда у нас объём салона в лучшем случае около трёх кубов? Действительно, счёт объёма ящика идёт на кубометры, если задаёмся чувствительностью 100 дБ и нижней частотной границей 16 Гц, мы с вами такие задачи перед собой не ставим, и теперь хорошо видно, почему и ставить их не надо. До практических результатов ещё доберёмся. В частности, мы видим, что функция монотонна относительно каждого аргумента (SPL и F3), то есть не существует такой области значений аргументов, где удалось бы уменьшить объём ящика, не проигрывая в протяжённости полосы по басам либо в чувствительности системы.

А вот теперь уже можно задаться вопросом: а как изменится объём ящика при наличии механических потерь? Поскольку рассмотрение всех вероятных сочетаний электрической и механической добротности выходит далеко за пределы любой журнальной статьи, надо было выбрать какое-то типичное значение механической добротности Qm. В результате обработки статистики, набранной нами в ходе многочисленных тестов, было получено осреднённое значение 3,3. Примерно такую же (3,333) величину механической добротности можно получить при использовании головки с механической добротностью 5 и добротностью потерь в ящике 10. Значение Qm = 3,333 было принято для дальнейших расчётов. На рис. 2 вы можете увидеть зависимости для объёма ЗЯ с учётом добротности потерь.

Рис. 2. ЗЯ с добротностью потерь 3,33 и полной добротностью Qtc = 0,707:


Расчёты показали, что учёт механических потерь приводит, как правило, к увеличению объёма ящика. Но зависимость эта нелинейная, и в тех случаях, когда электрическая добротность Qes приближается к «ящичной» добротности Qtc (в нашем случае - 0,6 и 0,707), присутствие потерь позволяет несколько выиграть в величине объёма. Правда, даже в этом случае ящики получаются значительно более объёмистыми, нежели для головок с низкой Qes, и если мы хотим узнать размеры минимально возможных ящиков для каждого значения добротности Qes, наличие потерь надо будет учитывать. К практическим реализациям мы перейдём чуть позже, но уже сейчас можно сделать некоторые предварительные выводы.

  1. Головки с высокой полной добротностью (Qts > 0,5) малопригодны для работы в компактном оформлении.
  2. При изменении граничной частоты на 1/3 октавы потребный объём ящика меняется вдвое (ну то есть как бы на октаву).
  3. То же происходит с объёмом ящика при изменении потребной чувствительности на 3 дБ.

Теперь уже можно оставить настройку Баттерворта позади и спросить: а как будет меняться объём ящика при сохранении значений всех аргументов, но при изменении добротности Qtc? Расчёты дали простой ответ: чем выше добротность, тем компактнее ящик. А значит, чтобы получить параметры «минимально возможного» ящика, надо задаться некоторыми ограничениями. И тут нам уже не обойтись без использования «стандартной» передаточной функции салона (она же «функция АвтоЗвука»). С привлечением к работе этой функции возникают следующие любопытные закономерности (мы продолжаем нумерацию).

  1. С ростом добротности Qtc и минимальной неравномерности АЧХ объём ящика уменьшается.
  2. В диапазоне значений полной добротности Qtc от 0,4 до 0,67 неравномерность АЧХ в салоне может быть выдержана не выше 0,4 - 0,6 дБ.
  3. При более высокой и более низкой добротности Qtc неравномерность АЧХ в салоне растёт.

При тестировании сабвуферов мы исходим из того, что неравномерности АЧХ менее 2 дБ (в диапазоне 25 - 100 Гц) достаточно для получения высшей оценки за форму частотной характеристики (сама эта рекомендация была получена на основе практики). Тогда для ящика с минимальным объёмом зададимся неравномерностью 1,9 дБ и получим настройку с такими параметрами:

Qtc = 0,80; Fc = 70,1 Гц (F3 = 63 Гц).

Вот для неё мы уже можем строить графики для практического применения. Обратите внимание, для головки с добротностью 0,6 также учтены механические потери в подвижной системе и ящике (рис. 3).

Рис. 3. Графики распределения объёмов ЗЯ с Qtc = 0,80 и Fc = 70 Гц

Для удобства ниже приводится таблица 1, в которую включены все те значения, на основании которых построены графики, показанные выше.

Таблица 1 . Объёмы ЗЯ с неравномерностью АЧХ в салоне 1,9 дБ

SPL, дБ Qes = 0,20 Qes = 0,30 Qes = 0,40 Qes = 0,50 Qes = 0,60
80 1,369 1,493 1,711 2,106 2,754
81 1,723 1,880 2,154 2,651 3,467
82 2,170 2,367 2,712 3,338 4,364
83 2,731 2,980 3,414 4,202 5,494
84 3,439 3,751 4,298 5,290 6,917
85 4,329 4,722 5,411 6,660 8,708
86 5,450 5,945 6,812 8,384 10,96
87 6,861 7,485 8,576 10,55 13,80
88 8,637 9,423 10,80 13,29 17,37
89 10,87 11,86 13,59 16,73 21,87
90 13,69 14,93 17,11 21,06 27,54
91 17,23 18,80 21,54 26,51 34,67
92 21,70 23,67 27,12 33,38 43,64
93 27,31 29,80 34,14 42,02 54,94
94 34,39 37,51 42,98 52,90 69,17
95 43,29 47,22 54,11 66,60 87,08
96 54,50 59,45 68,12 83,84 109,6
97 68,61 74,85 85,76 105,5 138,0
98 86,37 94,23 108,0 132,9 173,7
99 108,7 118,6 135,9 167,3 218,7
100 136,9 149,3 171,1 210,6 275,4

Как нетрудно заметить, в таблице достаточно было бы привести значения для диапазона, перекрывающего лишь 10 дБ разброса чувствительности SPL, остальные значения получаются путём переноса десятичной запятой. Скажем, объём ящика для SPL 90 дБ в десять раз больше, нежели для значения SPL, равного 80 дБ. Указанная закономерность, впрочем, напрямую связана с тем высказыванием, которое было выше приведено под номером 3.

С закрытым ящиком как будто всё ясно. С фазоинверторным оформлением, как обычно, несколько сложнее. Начнём с того, что не так уж просто понять, какую именно настройку считать наиболее компактной. В ходе математических экспериментов проявились следующие зависимости.

  1. Чем выше добротность головки в ящике Qtc, тем меньший выигрыш по ширине полосы даёт ФИ по сравнению с ЗЯ. По этой причине настройки с добротностью Qtc > 0,707, как нам представляется, смысла не имеют.
  2. Оформление с ФИ при той же граничной частоте F3 всегда компактнее, чем ЗЯ, когда на десятки процентов, а когда и в три-четыре раза.

Последнее утверждение кажется на первый взгляд несколько неожиданным - по нашему опыту, ящик с ФИ всегда объёмистее, чем ЗЯ. Как разрешается это противоречие, мы увидим чуть позже, а пока идём дальше. Те же математические эксперименты показали, что почти все настройки, известные из классической литературы (для свободного поля), в условиях автомобильного салона проявляют себя не наилучшим образом. Исключение составляет лишь настройка, известная по работам г-на Тиля как «максимально ровная настройка» Баттерворта четвёртого порядка (B4). При надлежащем выборе частоты настройки ящика Fc (не частоты настройки фазика Fb, а частоты резонанса головки в ящике, на импедансной кривой это - верхний горб двугорбой кривой) результирующая АЧХ в салоне становится подозрительно похожей на нашу «нормированную» АЧХ, которую мы стремимся построить при тестировании сабвуферов, правда с шириной полосы немного больше, чем «наши» 4/3 октавы. Так что для расчёта опорной настройки для расчётов мы взяли за основу именно нашу «стандартную» АЧХ с величиной среднего акустического усиления 4,0 дБ. Вернее говоря, задача стояла обратная: найти такую настройку (сочетание Qtc, Fc и Fb), при которой АЧХ в салоне будет иметь максимум на 35 Гц, а ширина полосы по уровню -3 дБ составит 4/3 октавы. Откуда взялась величина усиления 4 дБ? Дело в том, что при анализе предварительных результатов было сформировано следующее правило.

  1. Чем меньшее акустическое усиление обеспечивает оформление с ФИ, тем более компактным получается ящик.

Ну а 4 дБ - это практически минимальное значение акустического усиления из того, что мы получаем в наших тестах. (Обтекаемое выражение «практически минимальное» означает, что нам встречались показатели и немного ниже, но при этом было очевидно, что данная головка для работы в ФИ совсем не приспособлена.)

Итак, «минимальная настройка» имеет следующие параметры. Qtc = 0,58, Fc = 53 Гц, Fb = 32,6 Гц. Частота F3, измеренная по свободному полю, составляет 37,3 Гц.

Вот тут и открылась страшная тайна: наши ящики с ФИ выходят больше потому, что у них нижняя граничная частота по свободному полю должна быть значительно ниже, чем у ЗЯ - чтобы в салоне получились сравнимые результаты.

Теперь, используя все те же зависимости, можем построить аналогичные зависимости и для ФИ (рис. 4).

Рис. 4. Графики распределения объёмов ящиков с ФИ: с Qtc = 0,58, Fc = 53 Гц, Fb = 32,6 Гц

Обратите внимание, за основу для построения двух последних графиков были выбраны зависимости для оформления (и головок) с потерями, поскольку ящики получались чуть более компактными. И тоже для удобства пользования все данные мы свели в таблицу 2. Цветом выделена область значений функции, не превышающих 85 л (три «кубика»).

Таблица 2 . Объёмы ящика с ФИ, имеющегоо стандартизованную форму АЧХ

SPL Qes = 0,20 Qes = 0,30 Qes = 0,40 Qes = 0,50
80 2,451 2,949 3,896 5,669
81 3,086 3,712 4,905 7,137
82 3,885 4,673 6,175 8,985
83 4,891 5,883 7,774 11,31
84 6,157 7,407 9,786 14,24
85 7,751 9,325 12,32 17,93
86 9,758 11,74 15,51 22,57
87 12,28 14,78 19,53 28,41
88 15,47 18,61 24,58 35,77
89 19,47 23,42 30,95 45,03
90 24,51 29,49 38,96 56,69
91 30,86 37,12 49,05 71,37
92 38,85 46,73 61,75 89,85
93 48,91 58,83 77,74 113,1
94 61,57 74,07 97,86 142,4
95 77,51 93,25 123,2 179,3
96 97,58 117,4 155,1 225,7
97 122,8 147,8 195,3 284,1
98 154,7 186,1 245,8 357,7
99 194,7 234,2 309,5 450,3
100 245,1 294,9 389,6 566,9

Из сравнения данных таблиц 1 и 2 нетрудно заключить, что все без исключения ящики с ФИ имеют больший объём, нежели соответствующие ЗЯ. Тогда, спрашивается, ради чего огород городить? Чтобы найти ответ на этот вопрос, попробуем учесть акустическое усиление и прибавить к данным первого столбца те самые 4 дБ. А результат для ФИ и ЗЯ сведём в общую таблицу 3.

Таблица 3 . Сравнение объёмов ЗЯ и ФИ

Закрытый ящик Ящик с ФИ (АЗ1)
SPL, дБ Qes = 0,20 Qes = 0,30 Qes = 0,40 Qes = 0,50 Qes = 0,20 Qes = 0,30 Qes = 0,40 Qes = 0,50
84 3,439 3,751 4,298 5,290 2,451 2,949 3,896 5,669
85 4,329 4,722 5,411 6,660 3,086 3,712 4,905 7,137
86 5,450 5,945 6,812 8,384 3,885 4,673 6,175 8,985
87 6,861 7,485 8,576 10,55 4,891 5,883 7,774 11,31
88 8,637 9,423 10,80 13,29 6,157 7,407 9,786 14,24
89 10,87 11,86 13,59 16,73 7,751 9,325 12,32 17,93
90 13,69 14,93 17,11 21,06 9,758 11,74 15,51 22,57
91 17,23 18,80 21,54 26,51 12,28 14,78 19,53 28,41
92 21,70 23,67 27,12 33,38 15,47 18,61 24,58 35,77
93 27,31 29,80 34,14 42,02 19,47 23,42 90,95 45,03
94 34,39 37,51 42,98 52,90 24,54 29,49 38,96 56,69
95 43,29 47,22 54,11 66,60 30,86 37,12 49,05 71,37
96 54,50 59,45 68,12 83,84 38,85 46,73 61,75 89,85
97 68,61 74,85 85,76 105,5 48,91 58,53 77,74 113,1
98 86,37 94,23 1108,0 132,9 61,57 74,07 97,86 142,4
99 108,7 118,6 135,9 167,3 77,51 93,25 123,2 179,3
100 136,9 149,3 171,1 210,6 97,58 117,4 155,1 225,7

Как можно заметить, с учётом такой поправки фазику удаётся отыграть некоторое количество объёма (9 - 29%) у закрытого ящика. Исключение составляет только вариант с добротностью головки 0,50; как было уже сказано, головки с высокой добротностью мало приспособлены для работы в ФИ.

Что будет, если выбрать настройку с акустическим усилением не 4 дБ, а меньше или, наоборот, больше? Чем меньше усиление, тем физически меньший вклад в излучение вносит фазоинвертор и тем объём такого оформления ближе к объёму ЗЯ. Чем больше усиление, тем больше объём ящика с ФИ, но тем больший выигрыш в объёме (по сравнению с ЗЯ) он даёт с учётом акустического усиления. Получается так: если конструктор акустики, работающей в условиях свободного поля, платит относительным усложнением конструкции за снижение нижней частотной границы, то создатель акустики, работающей в компрессионной среде, платит той же монетой за сокращение объёма ящика. Одновременно с наращиванием акустического усиления, конечно же, увеличивается неравномерность АЧХ. Однако рост этой неравномерности не столь важен, поскольку происходит за пределами того диапазона (4/3 октавы), который нас интересует.

В своём стремлении выявить закономерности для установления объёмов оформления мы совершенно не касались немаловажного вопроса о реализуемости ящиков в данных конкретных объёмах с использованием тех или иных головок. Подробное рассмотрение этих закономерностей выходит за рамки любого одиночного журнального материала. Однако если ввести в рассмотрение ограничения по возможным значениям объёма ящика Vb, а также параметров Vas и Mas (масса подвижной системы) в зависимости от типоразмера, плюс ограничения на величину силового фактора Bl (уже вне зависимости от типоразмера), то можно получить любопытные результаты.

Идём снизу. Головки калибра 8 дюймов позволяют перекрыть примерно 2/3 диапазона по SPL снизу вверх (по нашей таблице получается наоборот, сверху вниз), то есть от 80 и до 94 дБ/Вт. Причём для головок с более высокой Qes «область покрытия» шире, чем у «восьмёрок» с мощным магнитом и, соответственно, низкой добротностью. Кстати, это общая закономерность: с учётом конструктивных ограничений область применения головок с низкой электрической добротностью смещается вниз, то есть в область более высокой чувствительности и большего объёма ящика.

Теперь переходим к наиболее известному в нашей отрасли (хотя и редкому) калибру 18 дюймов. Совершенно очевидно, что ящики на головках с такими статями оккупируют нижнюю часть таблицы - с большими объёмами и соответствующей чувствительностью. Головки с добротностью 0,2, как оказалось, вообще нереализуемы (мы же с вами не раз отмечали, что чем больше калибр, тем выше (на круг) добротность). Головки с добротностью 0,3 позволяют построить ящик с чувствительностью не ниже 97 дБ/Вт, но и объём там будет нешуточный. (Если у неё чувствительность ниже, значит, сабвуферы с «правильной» формой АЧХ на них не получаются, но они, наверное, и не для того создаются, по крайней мере в нашей отрасли.) Головки с добротностью выше 0,4 и дальше позволяют работать с опорной чувствительностью от 96 дБ/Вт и выше.

«Пятнашки» с добротностью около 0,20 - редкость чрезвычайная, один из таких раритетов нам недавно встретился «на ковре». На них реализуются ЗЯ с чувствительностью 92 - 94 дБ/Вт, и всё тут. По крайней мере так у меня получилось. Головки с более высокой добротностью покрывают более широкую область - от тех же 92 дБ/Вт и дальше.

Наконец, головки калибра 12 и 10 дюймов совместно перекрывают 3/4 диапазона, не вторгаясь лишь в область 84 дБ/Вт и ниже и оставив свободными ячейки с чувствительностью 100 дБ/Вт и немного ниже.

Может возникнуть вопрос: а что будет, если головки играют не по нашим правилам, в частности, чувствительность у них ниже, нежели положено? Это будет означать, что параметры головки не позволяют уложить АЧХ в заданный допуск 1,9 дБ при заданном объёме ящика. То есть либо ящик будет больше, либо же АЧХ будет иметь более высокую неравномерность. Так что приведённой выше таблицей можно пользоваться в качестве универсального определителя минимального объёма ящика. Правда, сказанное относится только к закрытому ящику, для фазоинвертора зависимости уже не столь однозначны.

Характерная особенность контрапертуры в том, что звук, приходящий к слушателю фактически со всех сторон, хотя и создает впечатляющий эффект присутствия, не может в полной мере передать информацию о звуковой сцене. Отсюда рассказы слушателей об ощущении летающего по комнате рояля и прочих чудесах виртуальных пространств.

Контрапертура

Плюсы: Широкая зона эффектного объемного восприятия, натуралистичность тембров благодаря нетривиальному использованию волновых акустических эффектов.

Минусы: Акустическое пространство заметно отличается от звуковой сцены, задуманной при записи фонограммы.

И другие...

Если вы думаете, что на этом список вариантов оформления колонок исчерпывается, значит вы сильно недооцениваете конструкторский энтузиазм электроакустиков. Я описал только наиболее ходовые решения, оставив за кадром близкую родственницу лабиринта - трансмиссионную линию, полосовой резонатор, корпус с панелью акустического сопротивления, нагрузочные трубы...


Nautilus от Bowers & Wilkins - одна из самых необычных, дорогих и авторитетных в плане звучания акустических систем. Тип оформления - нагрузочные трубы

Подобная экзотика встречается довольно редко, но иногда она материализуется в конструкции с действительно уникальным звучанием. А иногда и нет. Главное не забывать, что шедевры, как и посредственности, встречаются во всех оформлениях, что бы ни говорили идеологи того или иного бренда.

Понравилась статья? Поделиться с друзьями: